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Abstract

In Bayesian analysis of dynamic stochastic general equilibrium (DSGE) prior distri-

butions for some of the taste-and-technology parameters can be obtained from micro-

econometric or pre-sample evidence, but it is difficult to elicit priors for the parameters

that govern the law of motion of unobservable exogenous processes. Moreover, since it

is challenging to formulate beliefs about the correlation of parameters, most researchers

assume that all model parameters are independent of each other. We provide a simple

method of constructing prior distributions for (a subset of) DSGE model parameters

from beliefs about the moments of the endogenous variables. We use our approach to

investigate the importance of nominal rigidities and show how the specification of prior

distributions affects our assessment of the relative importance of different frictions.
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1 Introduction

A growing literature uses Bayesian methods to estimate and evaluate dynamic stochastic

general equilibrium (DSGE) models. Moreover, central banks are starting to employ es-

timated DSGE models for forecasting and policy analysis.1 Of particular interest is the

question what real and nominal frictions have to be included in the DSGE model to capture

the salient features of macroeconomic time series. Several approaches are available to an-

swer this questions: a comparison of impulse responses computed from DSGE models and

a structural vector autoregression, e.g., Christiano, Eichenbaum, and Evans (2005) or Del

Negro, Schorfheide, Smets, and Wouters (2006); an assessment of how far actual sample

moments lie in the tails of predictive distributions from DSGE models, e.g., Canova (1994);

a comparison of different DSGE model specifications based on their in-sample fit (adjusted

for model complexity) or pseudo-out-of-sample fit, e.g. Smets and Wouters (2003), and

Rabanal and Rubio-Ramirez (2005). In a Bayesian framework, prior distributions for the

DSGE model parameters play an important role for model comparisons. The contribution

of this paper is to provide an easily implementable method to elicit prior distributions for

DSGE model parameters from beliefs about sample moments of observable variables. This

method is then applied to study the role of nominal rigidities in a New Keynesian DSGE

model with both nominal and real frictions.

Prior distributions either reflect subjective opinions or summarize information derived

from data sets not included in the estimation sample. The latter case is essentially equiv-

alent to simplifying the likelihood function for a larger set of observations that would be

too complicated to model directly. For instance, when pre-sample information is used to

construct a prior, the tacit assumption is that the structure of the economy could have

changed prior to the beginning of the estimation sample, e.g., a drop in volatility of the

macroeconomic aggregates and a potentially more active monetary policy since the early

1980s in the U.S or harmonized monetary policy in the Euro Area starting in the late 1990s.

Alternatively, data definitions in the pre-sample and the estimation sample period could be

different. Priors for parameters that determine labor supply elasticities, mark-ups, frequen-

cies of price changes, and capital adjustment costs are often quantified based on evidence

from household or firm-level data sets which makes the specification of a joint likelihood

function to cumbersome. As discussed for instance in Chang, Gomes, and Schorfheide (2002)

1Some of the literature on Bayesian estimation of DSGE model is reviewed in An and Schorfheide (2006).

A December 2005 conference on “DSGE Modeling at Policymaking Institutions” held at the Federal Reserve

Board provides a good overview of the state of DSGE Modeling at central banks around the world.
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the prior distribution provides a useful device for incorporating micro-level information in

the estimation of a aggregate time series model.

There are three aspects of the prior specification that this paper aims to improve upon.

First, researchers typically assume that all DSGE model parameters are independent. This

assumption is made purely to simplify the analysis and has the drawback that the resulting

joint prior distribution assigns non-negligible probability mass to regions of the parameter

space where the model is quite unreasonable. Second, since most of the exogenous shock

processes are latent, it is difficult to quantify beliefs about their volatilities and autocorre-

lations. Hence, informally researchers often choose priors that ensure that the model is not

inconsistent with the autocovariance patterns observed in the actual sample or a pre-sample.

In practice, this amounts to simulating the prior predictive distribution for important sam-

ple moments and checking that the prior does not place little or no mass in a neighborhood

of important features of the data. The approach of eliciting priors based on beliefs about

predictive densities associated with an econometric model dates back at least to Kadane,

Dickey, Winkler, Smith, and Peters (1980). Our proposed method will automate the elici-

tation of priors for the parameters of the exogenous shock processes based on views about

reasonable magnitudes for sample moments of observables.

Third, after having specified a prior distribution for the parameters of a benchmark

model, researchers often use the same prior distribution for alternative model specifications

when assessing the relative importance of various model features. But identical parameteri-

zations of the exogenous shock processes potentially generate very different dynamics across

model specifications and hence the use of a common prior for all models can implicitly

penalize some specifications and favor others. Starting point of our proposed method are

views about sample characteristics of observables, which will be the same across different

DSGE model specifications. However, these beliefs will induce model-specific priors for the

actual parameters.

Our method for constructing a prior distribution can be summarized as follows. We par-

tition the vector of DSGE model parameters into two components: a sub-vector for which

we can elicit prior distributions directly and a sub-vector for which we elicit a prior distri-

bution based on the implied predictive distribution of the DSGE model for the observables.

We use a vector autoregression to derive a quasi-likelihood function for the DSGE model,

represent the prior views about the sample moments of observables as dummy observations

(or sufficient statistics for these dummy observations), and plug these dummy observations

into the quasi-likelihood function. The quasi-likelihood function is then interpreted as a
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prior density for a sub-vector of the DSGE model parameters. We refer to our prior as

dummy observations prior.

In the empirical application, we investigate the importance of nominal rigidities both

under a standard prior and our proposed dummy observation prior. We document to what

extent the assessment of the relative importance of different frictions is sensitive to the choice

of prior. We find that models with and without nominal wage rigidities can both explain the

persistence of inflation, especially when the latter are endowed with our proposed dummy

observations priors. Flexible wage models are rejected, however, because they cannot quite

reproduce the persistence in the labor share, a commonly used measure of marginal costs.

Overall, sticky prices are much more important than sticky wages in describing the dynamics

in the data. We also find that the evidence for dynamic indexation in the Phillips Curve,

which generates an additional lagged inflation term, becomes rather tenuous once we use a

prior that places all models considered on a similar footing.

The remainder of this paper is organized as follows. Section 2 provides two simple

example that illustrate that a naive choice of prior distributions can distort Bayesian pos-

terior odds for competing models. As an alternative, we consider a prior that is derived

from beliefs about predictive distributions, using a change-of-variable argument. Unless the

naive prior truly summarizes the prior information about model parameters, the change-of-

variable prior can help sharpen inference based on model odds and avoid misleading results

in the presence of identification problems. It is very difficult to construct the change-of-

variable prior for DSGE models. Hence, we are introducing our dummy observations prior

in Section 3. While the dummy observations prior inherits some of the desirable properties

of the change-of-variable prior, it is much easier to use in practice. We subsequently apply

the dummy observations prior to a New Keynesian DSGE model, described in Section 4.

Section 5 summarizes our empirical findings and Section 6 concludes.

2 Priors and Model Comparisons in Two Examples

In a Bayesian framework the likelihood function of an econometric model is re-weighted by

a prior to obtain a posterior distribution for the model parameters. In the estimation of

DSGE models prior distributions play an important role, see for instance the discussions in

An and Schorfheide (2006) and Lubik and Schorfheide (2006). The priors used in empirical

applications are typically quite informative and down-weigh regions of the parameter space

that are at odds with pre-sample information or other observations available to the researcher
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that are not contained in the estimation sample. The priors often add curvature to a

likelihood function that is (nearly) flat in some dimensions of the parameter space and

therefore strongly influence the shape of the posterior distribution. In principle, priors can

be gleaned from personal introspection and reflect beliefs about the validity and quantitative

implications of economic theories, but often they are based on some empirical observations.2

As discussed in the Introduction, the standard choice of priors in the empirical literature

on the estimation and evaluation of DSGE models has two shortcomings. First, the indepen-

dence assumption potentially leads to a prior distribution that assigns a lot of probability

mass to regions of the parameter space where the model is quite unreasonable. Second, after

having specified a prior distribution for the parameters of a benchmark model, researchers

often use the same prior distribution for alternative model specifications, when assessing the

relative importance of various model features. However, identical parameterizations of the

exogenous shock processes potentially generate very different dynamics across model specifi-

cations. We will illustrate these shortcomings and their consequences for model comparisons

in two simple examples.

Example 1: Consider a simple location model, denoted by M1, of the form

M1 : yt = θ + εt, εt ∼ N (0, 1) (1)

with the following prior distribution for θ:

θ ∼ N (µ, λ2).

In addition to M1 we consider a second model, M2, that allows for serial correlation in yt

M2 : yt = θ1yt−1 + θ2 + εt, εt ∼ N (0, 1). (2)

Prior beliefs about the autocorrelation coefficient are summarized by θ1 ∼ U [0, 1]. A com-

parison of the fit of M1 and M2 can be used to assess the importance of serial correlation.

We will explore two different prior distributions for M2.

Since both θ in M1 and θ2 in M2 can be interpreted as intercepts of a regression

function we could use the same prior distribution for the two coefficients and assume that

θ2 is independent of θ1:

Prior 1 : θ1 ∼ U [0, 1], θ2|θ1 ∼ N (µ, λ2). (3)

2A detailed discussion of prior elicitation techniques can be found in many Bayesian textbooks and the

references cited therein, e.g., Bauwens, Lubrano, and Richard (1999, Chapter 4).
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Alternatively, we could interpret the prior for M1 as reflecting the belief that the mean of

yt is normally distributed with mean µ and variance λ2. According to model M2 the mean

of yt is given by

IE[yt] = µ =
θ2

1− θ1
if 0 ≤ θ1 < 1.

Hence, a straightforward change-of-variable argument leads to the following prior:

Prior 2 : θ1 ∼ U [0, 1], θ2|θ1 ∼ N
(
µ(1− θ1), λ2(1− θ1)2

)
. (4)

Thus, under Prior 2 the two parameters of the AR(1) model are not independent anymore.

The closer θ1 is to one, the smaller the mean and variance of θ2.

The top panels of Figure 1 depict draws from the implicit distribution of the population

mean and autocorrelation of yt for model M2 under Priors 1 and 2. By construction, the

mean of yt is independent of the autocorrelation under Prior 2, whereas Prior 1 implies that

the distribution of µ becomes more and more diffuse as θ1 approaches 1. Hence, relative to

model M1, Prior 1 for model M2 places much more mass on parameterizations that imply

a very large (in absolute value) mean of yt.

In the bottom panels of Figure 1 we show draws from the marginal distribution of

two observations, y1 and y2, under the two priors for M2. Moreover, we also display draws

generated from the marginal distribution ofM1. These marginal distributions are important

for model comparisons based on posterior odds. According to Bayes Theorem, model odds

are updated as follows:
πT,1
πT,2

=
π0,1

π0,2

p(y1, . . . , yT |M1)
p(y1, . . . , yT |M2)

, (5)

where p(y1, . . . , yT |Mi) is the marginal likelihood (or data density) for model Mi. Under

Prior 1, the marginal data density for M2 is much more diffuse than under Prior 2, as it

assigns considerable mass to very large and very small values of yt. As a consequence, for

small or intermediate values of yt the posterior odds will tend to favor model M1, even in

presence of a positive correlation between y1 and y2. Vice versa, the more concentrated

marginal data density under Prior 2, will generate more decisive odds against M1 if there

is a positive correlation between y1 and y2. �

Example 2: Consider the following two rational expectations models adopted from Lubik

and Schorfheide (2006). Model M1 is given by:

M1 : yt =
1
α
IEt[yt+1] + ut, ut = ρ1ut−1 + εt, εt ∼ iid(0, σ2). (6)
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Thus, the exogenous driving process ut is serially correlated. Under model M2 the process

ut is uncorrelated, but the lagged endogenous variable appears on the right-hand-side:

M2 : yt =
1
α
IEt[yt+1] + ρ2yt−1 + ut, ut = εt, εt ∼ iid(0, σ2). (7)

The two models vaguely resemble New Keynesian Phillips curves, in which yt corresponds

to inflation and ut to marginal costs, which are treated as latent variable in this example.

If we restrict the parameters to values for which there exists a unique (stable) rational

expectations solution, we obtain the following reduced-form laws of motion. Under the

model M1

M1 : yt = ρ1yt−1 +
1

1− ρ1/α
εt, (8)

whereas M2 implies that

M2 : yt =
1
2
(α−

√
α2 − 4ρ2α)yt−1 +

2α

α+
√
α2 − 4ρ2α

εt. (9)

By setting ρ1 = 1
2 (α−

√
α2 − 4ρ2α) it is straightforward to verify that there exists a range

of parameters for which M1 and M2 are observationally equivalent. Although M1 and

M2 will generate identical reduced form forecasts, the effect of changes in α on the law of

motion of yt is different in the two specifications.

We begin by specifying a prior for the coefficients of M1. For i = 1, 2 let θ(i) = [α, ρi, σ]′

and ΘD
(i) be the region of the parameter space for which the rational expectations difference

equation has a unique stable solution.3 In particular, we assume that

p(θ(1)|M1) ∝ p̃α(α)p̃ρ(ρ1)p̃σ(σ){θ ∈ ΘD
(1)}, (10)

where {θ ∈ ΘD
(1)} is the indicator function that is one if θ lies in the determinacy region of

the parameter space and is zero otherwise. The densities p̃(·)(·) are given in Table 1.

For model M2 we consider two priors. Prior 1 is taken directly from M1 without taking

into account that the parameters ρ1 and ρ2 in the two models have very different effects on

the reduced-form dynamics:

Prior 1 : p(θ(2)|M2) ∝ p̃α(α)p̃ρ(ρ2)p̃σ(σ){θ ∈ ΘD
(2)}, (11)

where the p̃(·) densities are the same as for M1. The top left panel of Figure 2 depicts

draws from the implicit prior distribution of the population autocorrelation and standard

deviation for yt under the two models. The bottom left panel shows draws from the marginal
3We assume that α, σ ∈ R+ and ρi ∈ [0, 1). To ensure determinacy in M1 we require α > 1. To

guarantee determinacy in M2 we require α2 ≥ 4ρ2α, |α−
√

α2 − 4ρ2α| < 2, and |α +
√

α2 − 4ρ2α| > 2.
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distribution of two observations y1 and y2. It is evident from the plots that using the same

prior for the coefficients of the two models generates quite different implications for the

observables. Under M2, yt is much more persistent than under M1 and the marginal data

density is more spread out. Hence, depending on the realizations of yt the posterior odds

will signal strong evidence in favor of one of the two models.

In model M1 the prior for ρ1 essentially captures beliefs about the persistence of yt. As

in Example 1, we will now construct and alternative prior for model M2 based on beliefs4

about the autocorrelation of yt:

1
2
(α−

√
α2 − 4ρ2α) ∼ Beta(0.5, 0.05).

A change-of-variable argument leads to

Prior 2 : p(θ(2)|M2) ∝ p̃α(α)p̃ρ

(
1
2
(α−

√
α2 − 4ρ2α)

)
p̃σ(σ){θ ∈ ΘD

(2)} (12)

×
∣∣∣∣2α(α2 − 4ρ2α)−1/2

∣∣∣∣.
The last term in (12) represents the Jacobian for the parameter transformation and gener-

ates a priori dependence between α and ρ2. Since under the transformation ρ1 = 1
2 (α −√

α2 − 4ρ2α) the reduced forms associated with models M1 and M2 are identical, the two

right panels of Figure 2 indicate that the prior distribution of the population moments as

well as the marginal distribution of y1 and y2 obtained from models M1 and M2 are now

identical. As a consequence, posterior odds will be equal to prior odds regardless of the

realization of the yt’s. In this simple example that can be solved analytically it is straight-

forward to see that ρ1 and ρ2 are different parameters, and have different implications for

persistence in the two models. In larger scale DSGE models the persistence of the exoge-

nous processes also has different implications for the reduced form across models, yet that

is harder to see since these models cannot be solved analytically. �

In both examples we compare two types of priors. The first prior is constructed from

beliefs about the actual model parameters and assumes that these parameters are indepen-

dent, as is standard practice in the DSGE model literature. The second prior is derived

from beliefs about certain sample characteristics of the endogenous variable yt. A change-

of-variable argument is then used to map a prior formulated on the mean (Example 1) or

the autocorrelation (Example 2) of yt into a prior for the actual model parameters. Under

the change-of-variable prior the model parameters are a priori dependent. Unless a re-

searcher has direct believes about the model parameters itself, the change-of-variable prior
4As in Table 1, the Beta distribution is parameterized in terms of means and standard deviations.
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can help sharpen inference based on posterior model odds and avoid misleading results in

the presence of identification problems.

Unfortunately, it is difficult to implement change-of-variable priors in the context of

DSGE models. The mapping between structural and reduced-form parameters is highly

nonlinear and can only be explored numerically, which makes the computation of the Jaco-

bian matrix associated with the parameter transformation impractical. In the next section,

we are proposing an alternative approach, based on the use of dummy observations, that

allows researchers to incorporate beliefs about reduced-form characteristics of endogenous

variables into the construction of a prior distribution, without having to explicitly derive a

Jacobian matrix.

3 Dummy Observation Priors for DSGE Models

It is well known that it is possible to interpret the parameters of a natural conjugate prior as

the sufficient statistics of a hypothetical sample. A prior constructed from such a hypothet-

ical sample is called a dummy observations prior and the posterior can then be computed

based on a mixed sample of actual and hypothetical observations, e.g., Theil and Goldberger

(1961). Dummy observations are frequently used to construct prior distributions for vector

autoregressions, for instance to represent a version of the so-called Minnesota prior (Doan,

Litterman, and Sims, 1984) or to tilt the VAR estimates toward restrictions implied by a

DSGE model (Del Negro and Schorfheide, 2004). In case of the Minnesota prior, the re-

searcher typically specifies a sample of dummy observations, whereas for the DSGE model

prior in Del Negro and Schorfheide (2004) the structural model is used to generate only

the sufficient statistics for the hypothetical sample. We will subsequently propose a dummy

observations prior for the DSGE model parameters that inherits some of the desirable prop-

erties of the change-of-variable prior discussed in the previous sections and that can be used

to overcome the shortcomings of the standard prior distributions used in the DSGE model

literature.

3.1 Prior Specification

As in the examples of Section 2, we want to express our beliefs in terms of some simple

statistics: means, variances, autocorrelations, et cetera. Due to the state-space structure of

the DSGE models, low-dimensional sufficient statistics are typically not available. Hence,
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instead of constructing the dummy observation prior from the actual likelihood function of

the DSGE model, we are deriving it based on a quasi-likelihood function for which suffi-

cient statistics are readily available. More specifically, we are using the likelihood function

associated with a p-th order vector autoregression:

yt = Φ0 + Φ1yt−1 + . . .+ Φpyt−p + ut, ut ∼ N (0,Σ), (13)

where yt is an n× 1 vector of observables. Let xt be the k× 1 vector [1, y′t−1, . . . , y
′
t−p]

′ and

re-write the VAR as linear regression model

y′t = x′tΦ + u′t. (14)

To relate the DSGE model parameters θ to the VAR parameters Φ,Σ, we assume that

the observables have been transformed such that the vector yt is covariance stationary

according to the DSGE model. ΓDY Y (θ), ΓDYX(θ) and ΓDXX(θ) denote the population auto-

covariances IEDθ [yty′t], IE
D
θ [ytx′t], and IEDθ [xtx′t], which are calculated from a DSGE model

conditional on a particular parameterization θ. We then define a VAR approximation of the

DSGE model through the population least-squares regression:

ΦD(θ) = [ΓDXX(θ)]−1ΓDXY (θ), ΣD(θ) = ΓDY Y (θ)− ΓDYX(θ)[ΓDXX(θ)]−1ΓDXY (θ). (15)

In the multivariate Gaussian linear regression model (14) the sufficient statistics for a set

of dummy observations {y∗t , x∗t }T
∗

t=1 are given by
∑
y∗t y

∗′
t ,

∑
y∗t x

∗′
t , and

∑
x∗tx

∗′
t , which we

will write as T ∗Γ∗Y Y , T ∗Γ∗Y X , and T ∗Γ∗XX , respectively. Our dummy observations prior

for the DSGE model parameters is based on the quasi-likelihood function (premultiplied by

|ΣD(θ)|−(n+1)/2)

L(θ|Γ, T ∗) = |ΣD(θ)|−(T∗+n+1)/2 (16)

× exp
{
−T

∗

2
tr

[
ΣD(θ)−1(Γ∗Y Y − 2ΦD(θ)Γ∗XY + Φ′

D(θ)Γ∗XXΦD(θ)
]}

,

where the autocovariance matrices Γ∗ = {Γ∗Y Y ,Γ∗XY ,Γ∗XX} are either constructed from in-

trospection, a pre-sample of actual observations, or an alternative candidate model. The

quasi-likelihood (16) is small at values of θ for which the DSGE model implied autocovari-

ances strongly differ from the Γ∗’s. The parameter T ∗ captures the precision of our beliefs:

The larger T ∗, the sharper the peak of L(θ|Γ∗, T ∗).

We proceed by decomposing the vector of DSGE model parameters into two components:

θ = [θ′1, θ2]
′. θ1 collects the parameters for which we can elicit prior distributions directly,

say, based on micro-econometric and other quantitative evidence not obtained from the
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estimation sample. θ2 is a sub-vector of parameters for which we elicit a prior distribution

indirectly by specifying beliefs on autocovariance matrices Γ∗.

A natural approach is to specify a marginal prior distribution for θ1, denoted by p(θ1),

and use quasi-likelihood function to generate a conditional prior of θ2 given θ1.

p∗(θ1, θ2|Γ∗, T ∗) = c1(θ1|Γ∗, T ∗)L(θ1, θ2|Γ∗, T ∗)π(θ2)︸ ︷︷ ︸
p∗(θ2|θ1,Γ∗, T ∗)

p(θ1), (17)

where c1(θ1|Γ∗, T ∗) is chosen such that

1
c1(θ1|Γ∗, T ∗)

=
∫
L(θ1, θ2|Γ∗, T ∗)π(θ2)dθ2 for all θ1.

The disadvantage of the prior defined in (17) that it depends on a normalization constant

that typically cannot be calculated analytically. Hence, (17) would be very difficult to

implement in practice.

For the empirical work presented in Section 5 we consider the following simplification.

p(θ1, θ2|Γ∗, T ∗) = c1(θ1|Γ∗, T ∗)L(θ1, θ2|Γ∗, T ∗)π(θ2)︸ ︷︷ ︸
p(θ2|Γ∗, T ∗)

p(θ1), (18)

where c1(θ1|Γ∗, T ∗) is chosen such that

1
c1(θ1|Γ∗, T ∗)

=
∫
L(θ1, θ2|Γ∗, T ∗)π(θ2)dθ2.

This simplification leads to a prior in which θ1 and θ2 are independent and the normalization

constant does not depend on θ1. If the prior is used in model comparisons, T ∗ has to be

sufficiently large to ensure that p(θ2|Γ∗, T ∗) (or p(θ2|θ1,Γ∗, T ∗)) is proper even if π(θ2) is

not.

The rationale for using a VAR approximation of the DSGE model is that we can express

our beliefs in the form of the sufficient statistics Γ∗Y Y , Γ∗Y X , and Γ∗XX , that is, in terms of

variances and autocorrelations. If we were to use the likelihood of the DSGE model we

would have to specify an actual time series for the dummy observations. Furthermore, the

following result provides a basis for using the VAR approximation. Let IEV ARΦ,Σ [·] denote

expectations under the probability distribution generated by the VAR approximation of the

DSGE model. Then:

IEV ARΦD(θ),ΣD(θ)[yty
′
t] = IEDθ [yty′t], IE

V AR
ΦD(θ),ΣD(θ)[ytx

′
t] = IEDθ [ytx′t], IE

V AR
ΦD(θ),ΣD(θ)[xtx

′
t] = IEDθ [xtx′t].

(19)
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The result, which can be verified by straightforward matrix manipulations, shows that the

VAR(p) approximation and the DSGE model have the same implications for the moments

of interest. This means that if we apply our procedure with T ∗ = ∞ and then generate

data from the DSGE model, the expectation for the relevant moments is going to be exactly

Γ∗Y Y , Γ∗Y X , and Γ∗XX .

3.2 Example 1 – Revisited

Suppose we would like to incorporate the belief that the mean of yt is approximately µ

using the dummy observation approach. Let ΓY Y = µ2 + 1 and ΓY X = µ. The restriction

function that relates the parameters of the AR(1) model to the location model is given by

φD(θ) =
θ2

1− θ1
.

Hence, we obtain

L(θ|Γ∗, T ∗) = (2π)−T
∗/2 exp

{
−T

∗

2

(
1 + µ2 − 2µ

θ2
1− θ1

+
θ22

(1− θ1)2

)}
(20)

Combining the quasi-likelihood function with the initial prior distribution

p(θ1, θ2) ∝ {0 ≤ θ1 < 1}

yields

p(θ1) ∝ |1− θ1| and θ2|θ1 ∼ N
(
µ(1− θ1),

1
T ∗

(1− θ1)2
)
, (21)

which corresponds to (17). The larger T ∗ the smaller the variance of the conditional distri-

bution of θ2 given θ1. Hence the conditional distribution of θ2 given θ1 under the change-

of-parameter approach is identical to (21) if we set λ = 1/
√
T ∗. Notice, however, that the

marginal distribution of θ1 is not affected by T ∗. If we simplify the dummy observations

prior by conditioning on a particular value θ1 as in (18) we obtain

θ1 ∼ U [0, 1] and θ2|θ1 ∼ N
(
µ(1− θ1),

1
T ∗

(1− θ1)
2

)
. (22)

3.3 Implementation

In order to implement the proposed dummy observations prior for the sub-vector θ2 a number

of choices have to be made. The parameter T ∗ scales the prior distribution: the larger T ∗

the more concentrated the prior. The Γ∗ matrices summarize the information contained in

the dummy observations. Suppose that p = 0. Then Γ∗ only contains information about
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the mean and the covariance matrix of yt and hence the researcher only uses beliefs about

location and scale to construct a prior for θ2. If p = 1 and xt is composed only of yt−1

and the autocovariance matrices in Γ∗ are specified in terms of deviations of yt from its

mean, then the prior for θ2 will indirectly be based on beliefs about the covariance matrix

of yt and first-order autocorrelations. This will be the case considered in the empirical

implementation.

The numerical values for the Γ∗ matrix could be obtained from introspection, calculated

from a pre-sample or based on data from a different country, or they could be obtained from a

benchmark model. For instance, suppose the goal is to estimate a DSGE model for the Euro

Area. A synthetic Euro-area data set is only available from the mid 1970s onwards. More-

over, the harmonization of monetary policy across the Euro-area countries did not start until

the early 1990s. Our method allows the researcher to incorporate sample autocovariances,

say computed from a subset of the Euro-area countries, through the dummy observation

prior into the estimation of the DSGE model, without having to impose the structure of

the likelihood function on this pre-sample. Similarly, it has been well documented that

across many countries the volatility of the major macroeconomic time series has dropped

substantially in the early 1980s. Without introducing time-varying shock volatilities into

the DSGE model as in Justiniano and Primiceri (2006), our method allows us to calculate

autocovariance estimates based on a pre-1980 sample, scale them to reflect the reduction in

volatility post-1980, and use the scaled autocovariances to obtain the dummy observation

prior.

In the empirical application we are going to form the Γ∗ on the basis of a pre-sample,

without any adjustment, to keep the exercise as simple as possible and avoid any arbitrary

choice. In this case, if p were sufficiently large, our approach is similar to the use of a training-

sample prior for the estimation of the DSGE model parameters. Moreover, posterior odds

comparisons would become essentially predictive likelihood comparisons.5 An advantage of

our approach is that it can be used even in absence of a pre-sample, as long as the researcher
5The predictive likelihood associated with a Bayes model is of the form

p(yτ+1, . . . , yT |y1, . . . , yτ ) =

∫
p(yτ+1, . . . , yT |θ, y1, . . . , yτ )p(θ|y1, . . . , yτ )dθ,

where p(θ|y1, . . . , yτ ) is the posterior density of θ given y1, . . . , yτ . and p(yτ+1, . . . , yT |θ, y1, . . . , yτ ) is the

predictive density for the “future” observations given the parameter θ. The predictive likelihood is closely

related to the marginal likelihood:

p(yτ+1, . . . , yT |y1, . . . , yτ ) =
p(y1, . . . , yT )

p(y1, . . . , yτ )
.
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has beliefs on the autocovariance matrices Γ∗. Even if she uses a pre-sample, she can easily

summarize her confidence in the pre-sample moments via the hyperparameter T ∗.

Once Γ∗ and T ∗ have been determined, Markov Chain Monte Carlo techniques can be

used to implement Bayesian computations. Due to the nonlinearities of Φ∗(θ) and Σ∗(θ) it

is not possible to generate draws from the prior distribution of θ directly. In the application

in Section 5 we use a random-walk Metropolis algorithm, described in detail for instance in

Del Negro and Schorfheide (2004) and An and Schorfheide (2006), to generate draws from

the prior distribution. This algorithm only requires us to be able to numerically evaluate the

prior density (18) up to the normalization constant. Based on the output of the Metropolis

algorithm, Geweke’s (1999) modified harmonic mean estimator can be used to calculate the

normalization constant c1(θ|Γ∗, T ∗). The same algorithms can be used to obtain draws from

the posterior distribution. The only modification that is necessary is to replace (18) by the

product of prior density and likelihood function of the DSGE model. For a linearized DSGE

model the likelihood function can be evaluated with the Kalman filter.

4 The DSGE Model

This section briefly describes the DSGE model, which is taken from Del Negro, Schorfheide,

Smets, and Wouters (2006). The model is based on work of Smets and Wouters (2003) and

Christiano, Eichenbaum, and Evans (2005) and contains a large number of nominal and real

frictions. To make this paper self-contained we subsequently describe the structure of the

model economy and the decision problems of the agents in the economy. The exposition

closely follows Section 2 of Del Negro, Schorfheide, Smets, and Wouters (2006).

4.1 Final Goods Producers

The final good Yt is a composite made of a continuum of intermediate goods Yt(i), indexed

by i ∈ [0, 1]:

Yt =
[∫ 1

0

Yt(i)
1

1+λf,t di

]1+λf,t

(23)

where λf,t ∈ (0,∞) follows the exogenous process:

lnλf,t = (1− ρλf
) lnλf + ρλf

lnλf,t−1 + σλ,f ελ,t, (24)

where ελ,t is an exogenous shock with unit variance that in equilibrium affects the mark-

up over marginal costs. The final goods producers are perfectly competitive firms that
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buy intermediate goods, combine them to the final product Yt, and resell the final good to

consumers. The firms maximize profits

PtYt −
∫
Pt(i)Yt(i)di

subject to (23). Here Pt denotes the price of the final good and Pt(i) is the price of

intermediate good i. From their first order conditions and the zero-profit condition we

obtain that:

Yt(i) =
(
Pt(i)
Pt

)−
1+λf,t

λf,t

Yt and Pt =
[∫ 1

0

Pt(i)
− 1

λf,t di

]−λf,t

. (25)

4.2 Intermediate goods producers

Good i is made using the technology:

Yt(i) = Z1−α
t Kt(i)αLt(i)1−α, (26)

where the technology shock Zt (common across all firms) follows a unit root process. We

define technology growth zt = log(Zt/Zt−1) and assume that zt follows the autoregressive

process:

zt = (1− ρz)γ + ρzzt−1 + σzεz,t. (27)

All firms face the same prices for their labor and capital inputs. Hence profit maximization

implies that the capital-labor ratio is the same for all firms:

Kt(i)
Lt(i)

=
α

1− α

Wt

Rkt
, (28)

where Wt is the nominal wage and Rkt is the rental rate of capital. Following Calvo (1983),

we assume that in every period a fraction of firms ζp is unable to re-optimize their prices

Pt(i). These firms adjust their prices mechanically according to

Pt(i) = (πt−1)ιp(π∗)1−ιp , (29)

where πt = Pt/Pt−1, π∗ is the steady state inflation rate of the final good, and ι ∈ [0, 1].

Those firms that are able to re-optimize prices choose the price level P̃t(i) that solves:

maxP̃t(i)
IEt

[∑∞
s=0 ζ

s
pβ

sΞpt+s
(
P̃t(i)

(
Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
−MCt+s

)
Yt+s(i)

]
s.t. Yt+s(i) =

 P̃t(i)
(
Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
Pt+s

−
1+λf,t

λf,t

Yt+s, MCt+s =
α−αW 1−α

t+s R
k α
t+s

(1− α)(1−α)Z1−α
t+s

,

(30)
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where βsΞpt+s is today’s value of a future dollar for the consumers and MCt reflects marginal

costs. We consider only the symmetric equilibrium where all firms will choose the same P̃t(i).

Hence from (25) we obtain the following law of motion for the aggregate price level:

Pt =

[
(1− ζp)P̃

− 1
λf,t

t + ζp

(
π
ιp
t−1π

1−ιp
∗ Pt−1

)− 1
λf,t

]−λf,t

. (31)

4.3 Labor Packers

There is a continuum of households, indexed by j ∈ [0, 1], each supplying a differentiated

form of labor, L(j). The labor packers are perfectly competitive firms that hire labor from

the households and combine it into labor services Lt that are offered to the intermediate

goods producers:

Lt =
[∫ 1

0

Lt(j)
1

1+λw di

]1+λw

, (32)

where λw ∈ (0,∞) is a fixed parameter. From first-order and zero-profit conditions of

the labor packers we obtain the labor demand function and an expression for the price of

aggregated labor services Lt:

(a) Lt(j) =
(
Wt(j)
Wt

)− 1+λw
λw

Lt and (b) Wt =
[∫ 1

0

Wt(j)−
1

λw di

]−λw

. (33)

4.4 Households

The objective function for household j is given by:

IEt

∞∑
s=0

βs

[
log(Ct+s(j)− hCt+s−1(j))−

φt+s
1 + νl

Lt+s(j)1+νl +
χ

1− νm

(
Mt+s(j)
Zt+sPt+s

)1−νm
]

(34)

where Ct(j) is consumption, Lt(j) is labor supply, andMt(j) is money holdings. Household’s

preferences display habit-persistence. The exogenous preference shifter φt, which affects the

marginal utility of leisure, is common to all households and evolves as:

lnφt = (1− ρφ) lnφ+ ρφ lnφt−1 + σφεφ,t, (35)

Real money balances enter the utility function deflated by the (stochastic) trend growth of

the economy, so to make real money demand stationary.

The household’s budget constraint written in nominal terms is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) +Bt+s(j) +Mt+s(j) + Tt+s(j) (36)

≤ Rt+s−1Bt+s−1(j) +Mt+s−1(j) +At+s−1(j) + Πt+s +Wt+s(j)Lt+s(j)

+
(
Rkt+sut+s(j)K̄t+s−1(j)− Pt+sa(ut+s(j))K̄t+s−1(j)

)
,
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where It(j) is investment, Bt(j) are holdings of government bonds, Tt(j) are lump-sum

taxes (or subsidies), Rt is the gross nominal interest rate paid on government bonds, At(j)

is the net cash inflow from participating in state-contingent securities, Πt is the per-capita

profit the household gets from owning firms (households pool their firm shares, and they

all receive the same profit), and Wt(j) is the nominal wage earned by household j. The

term within parenthesis represents the return to owning K̄t(j) units of capital. Households

choose the utilization rate of their own capital, ut(j). Households rent to firms in period t

an amount of effective capital equal to:

Kt(j) = ut(j)K̄t−1(j), (37)

and receive Rkt ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization in

terms of the consumption good equal to a(ut(j))K̄t−1(j). Households accumulate capital

according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) + µ

(
1− S

(
It(j)
It−1(j)

))
It(j), (38)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S(eγ) = 0, and S′′(·) > 0.

The households’ wage setting is subject to nominal rigidities á la Calvo (1983). In

each period a fraction ζw of households is unable to re-adjust wages. For these households,

the wage Wt(j) will increase at a geometrically weighted average of the steady state rate

increase in wages (equal to steady state inflation π∗ times the steady state growth rate of

the economy eγ) and of last period’s inflation times last period’s productivity (πt−1e
zt−1).

The weights are 1− ιw and ιw, respectively. Those households that are able to re-optimize

their wage solve the problem:

maxW̃t(j)
IEt

∑∞
s=0 ζ

s
wβ

sbt+s

[
− φt+s

1 + νl
Lt+s(j)1+νl

]
s.t. Eq. (36) for s = 0, . . . ,∞, (33a), and

Wt+s(j) =
(
Πs
l=1(π∗e

γ)1−ιw(πt+l−1e
zt+l−1)ιw

)
W̃t(j).

(39)

We again consider only the symmetric equilibrium in which all agents solving (39) will

choose the same W̃t(j). From (33b) it follows that:

Wt = [(1− ζw)W̃
− 1

λw
t + ζw((π∗eγ)1−ιw(πt−1e

zt−1)ιwWt−1)−
1

λw ]−λw . (40)

Finally, we assume there is a complete set of state contingent securities in nominal

terms, which implies that the Lagrange multiplier Ξpt (j) associated with (36) must be the
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same for all households in all periods and across all states of nature. This in turn implies

that in equilibrium households will make the same choice of consumption, money demand,

investment and capital utilization. Since the amount of leisure will differ across households

due to the wage rigidity, separability between labor and consumption in the utility function

is key for this result.

4.5 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in response

to deviations of inflation and output from their respective target levels:

Rt
R∗ =

(
Rt−1

R∗

)ρR
[(

πt
π∗

)ψ1
(
Yt
Y ∗
t

)ψ2
]1−ρR

eσRεR,t , (41)

where εR,t is the monetary policy shock, R∗ is the steady state nominal rate, Y ∗
t is the target

level of output, and the parameter ρR determines the degree of interest rate smoothing. We

set the target level of output Y ∗
t in (41) equal to the trend level of output Y ∗

t = ZtY
∗,

where Y ∗ is the steady state of the model expressed in terms of detrended variables. The

central bank supplies the money demanded by the household to support the desired nominal

interest rate.

The government budget constraint is of the form

PtGt +Rt−1Bt−1 +Mt−1 = Tt +Mt +Bt, (42)

where Tt are total nominal lump-sum taxes (or subsidies), aggregated across all households.

Government spending is given by:

Gt = (1− 1/gt)Yt, (43)

where gt follows the exogenous process:

ln gt = (1− ρg) ln g + ρg ln gt−1 + σgεg,t (44)

4.6 Resource Constraint

The aggregate resource constraint:

Ct + It + a(ut)K̄t−1 =
1
gt
Yt. (45)

can be derived by integrating the budget constraint (36) across households, and combining

it with the government budget constraint (42) and the zero profit conditions of both labor

packers and final good producers.
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4.7 Model Solution

As in Altig, Christiano, Eichenbaum, and Lindé (2004) our model economy evolves along

stochastic growth path. Output Yt, consumption Ct, investment It, the real wage Wt/Pt,

physical capital K̄t and effective capital Kt all grow at the rate Zt. Nominal interest rates

Rt, inflation πt, and hours worked Lt are stationary. The model can be rewritten in terms

of detrended variables. We find the steady states for the detrended variables and use the

method in Sims (2002) to construct a log-linear approximation of the model around the

steady state. All subsequent statements about the DSGE model are statements about its

log-linear approximation. We collect all the DSGE model parameters in the vector θ, stack

the structural shocks in the vector εt, and derive a state-space representation for:

yt = [ln(Yt/Yt−1), lnLt, ln(WtLt/Yt), πt, Rt]′.

5 Assessing the Role of Nominal Rigidities

We will now apply the dummy observations prior proposed in Section 3 to the DSGE

model outlined in the previous section. Throughout this section we will fix the following

parameters: δ = 0.025, λw = 0.3. We choose the mean of the preference shock, φ, such

that in steady state each household supplies one unit of labor. Hence, φ does not appear in

the subsequent definition of θ. Using the notation of Section 3 we will partition the DSGE

model parameters as follows:

θ1 = [α, ζp, ιp, s′, h, a′′, νl, ζw, ιw, r∗, ψ1, ψ2, ρr, π
∗, γ, λf , g

∗, Ladj ]′

θ2 = [ρz, ρφ, ρλf
, ρg, σz, σφ, σλf

, σg, σr]′

The parameter Ladj captures the units of measured hours worked. The vector θ1 contains

the subset of parameters for which we will specify a prior distribution directly, whereas θ2

collects the parameters for which we elicit a prior distribution based on the DSGE model

implied predictive distribution for the observables. In our empirical application, θ2 contains

the autocorrelations and the standard deviations of the exogenous shock processes.6

The remainder of this section is organized as follows. We briefly describe the compo-

sition of the vector of observables, yt, and the data sources in Section 5.1. In Section 5.2
6In principle we could also include the steady state parameters r∗, g∗, π∗, Ladj , and α into θ2 to automate

the custom of constructing priors for these parameters based on pre-sample averages.
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we describe a standard prior distribution7 for the DSGE model parameters θ = [θ′1, θ
′
2]
′.

Next, we compare this prior with the dummy observation prior for θ2, computed using the

approach described in section 3 The Γ∗ matrices used to construct the dummy observations

are based on sample autocovariance matrices Γ̂Y Y , Γ̂Y X , Γ̂XX computed from a pre-sample

of observations ranging from QIII:1954 to QIV:1980 to specify Γ∗. Section 5.3 compares the

implications of the standard prior to those of the dummy observations prior in the bench-

mark version of our DSGE model. We introduce flexible wages and prices specifications of

the DSGE model in Section 5.4 and ask what effect prior distributions have when it comes to

the assessment of nominal rigidities. Finally, section 5.5 studies the presence of indexation

in the New-Keynesian Phillips curve.

5.1 The Data

We will subsequently use data in two instances. First, we use a pre-sample from QIII:1954

to QIV:1980 to elicit our beliefs on the moments of the endogenous variables, i.e. to con-

struct the Γ∗ matrices for the dummy observations prior. Second, we use a sample of 100

observations on output growth, inflation, interest rates, log hours worked, and the log labor

share from QI:1981 to QIV:2005 to compute posterior distributions and marginal likelihood

values. Our data are obtained from Haver Analytics (Haver mnemonics are in italics). Real

output is obtained by dividing the nominal series (GDP) by population 16 years and older

(LN16N), and deflating using the chained-price GDP deflator (JGDP). We compute quarter-

to-quarter output growth as log difference of real GDP per capita and multiply the growth

rates by 100 to convert them into percentages. Our measure of hours worked is computed by

taking total hours worked reported in the National Income and Product Accounts (NIPA),

which is at annual frequency, and interpolating it using growth rates computed from hours

of all persons in the non-farm business sector (LXNFH). We divide hours worked by LN16N

to convert them into per capita terms. We then take the log of the series multiplied by

100 so that all figures can be interpreted as percentage changes in hours worked. The labor

share is computed by dividing total compensation of employees (YCOMP) obtained from

the NIPA by nominal GDP. We then take the log of the labor share multiplied by 100. Infla-

tion rates are defined as log differences of the GDP deflator and converted into annualized

percentages. The nominal rate corresponds to the effective Federal Funds Rate (FFED),

7The term standard does not refer to particular numerical values but rather to the approach of specifying

a prior directly for the θ2 i) assuming independence between the different elements of θ2, and ii) using the

same prior for the different specifications considered.
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also in percent.

5.2 Prior Distributions

We begin by specifying a standard prior distribution for the entire vector θ of DSGE model

parameters. This prior is summarized in Table 2 and the first four columns of Table 3

and essentially corresponds to the one used in Del Negro, Schorfheide, Smets, and Wouters

(2006).

We begin with the description of the marginal distributions for the θ1 parameters, that

is, those parameters for which we specify a prior directly. The priors for the degree of price

and wage stickiness, ζp and ζw, are both centered at 0.6, which implies that firms and house-

holds re-optimize their prices and wages on average every two and half quarters. The 90%

interval is very wide and encompasses findings in micro-level studies of price adjustments

such as Bils and Klenow (2004). The priors for the degree of price and wage indexation,

ιp and ιw, are nearly uniform over the unit interval. The prior for the adjustment cost pa-

rameter s′ is consistent with the values that Christiano, Eichenbaum, and Evans (2005) use

when matching DSGE impulse response functions to consumption and investment, among

other variables, to VAR responses.

The prior for the habit persistence parameter h is centered at 0.7, which is the value

used by Boldrin, Christiano, and Fisher (2001). These authors find that h = 0.7 enhances

the ability of a standard DSGE model to account for key asset market statistics. The prior

for a′′ implies that in response to a 1% increase in the return to capital, utilization rates rise

by 0.1 to 0.3%. These numbers are considerably smaller than the one used by Christiano,

Eichenbaum, and Evans (2005). The 90% interval for the prior distribution on νl implies

that the Frisch labor supply elasticity lies between 0.3 and 1.3, reflecting the micro-level

estimates at the lower end, and the estimates of Kimball and Shapiro (2003) and Chang

and Kim (2006) at the upper end.

We use a pre-sample of observations from QI:1960 to QI:1974 to choose the prior means

for the parameters that determine steady states. The prior mean for the technology growth

rate is 2% per year. The annualized steady state inflation rate lies between 0.5 and 5.5%

and the prior for the inverse of the discount factor r∗ implies a growth adjusted real interest

rate of 4% on average. The prior means for the capital share α, the substitution parameter

λf , and the steady state government share 1 − 1/g are chosen to capture the labor share

of 0.57, the investment-to-output ratio of 0.24, and the government share of 0.21 in the
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pre-sample. The distribution for ψ1 and ψ2 is approximately centered at Taylor’s (1993)

values, whereas the smoothing parameter lies in the range from 0.17 to 0.83. Finally, the

prior for Ladj is chosen based on quarterly per capita hours worked in the pre-sample.

The standard priors for the parameters of the shock processes, θ2, are obtained as fol-

lows. Since we model the level of technology Zt as a unit root root process, the prior for

ρz, which measures the serial correlation of technology growth zt, is centered at 0.4. The

priors for ρφ (preference for leisure), ρλf
(price markup shocks), ρg (government spending)

are fairly diffuse and centered around 0.75. Finally, the priors for the standard deviation

parameters are chosen to obtain realistic magnitudes for the implied volatility of the en-

dogenous variables. Under the standard prior we assume that the parameters are a priori

independent. Also, we follow the common approach of keeping the standard prior unchanged

as we consider different DSGE model specifications in Sections 5.4 and 5.5.

As an alternative to the standard prior we consider dummy observations priors based on

different choices of T ∗. We retain the prior for θ1 described in Table 2 and use the dummy

observations to generate a prior for θ2. Using the notation of Section 3, we combine the

quasi-likelihood function in (18) with an initial prior π(θ2) that is uniform on [0, 1) for the

autocorrelation parameters and proportional to 1/σ for the standard deviation parameters,

see column 5 of Table 3. In specifying the autocovariance matrices Γ∗ that enter the quasi-

likelihood function we choose a value of p = 1, that is, we use the pre-sample to form beliefs

about the contemporaneous covariance matrix and the first-order auto and cross-correlations

for the endogenous variables.

5.3 Standard vs. Dummy Observation Prior in Benchmark Model

We use a random-walk Metropolis algorithm to generate parameter draws from the dummy

observations prior and directly sample from the standard prior. Table 3 summarizes prior

means and standard deviations for the parameters of the exogenous shock processes in the

benchmark model. Under dummy observations prior the technology and preference shock

are more volatile. Mark-up and technology shock are slightly more persistent, whereas the

autocorrelation of the preference and government spending shocks drops.

One of the motivations for the benchmark prior was to be able to generate correlation

between the DSGE model parameters and shift probability mass away from parameter

combinations that are empirically implausible. The panels of Figure 3 depict bivariate

scatter plots of draws generated from the two prior distributions. The dummy observations
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prior introduces a strong negative correlation between the autocorrelation and standard

deviation parameters associated with the preference and mark-up shock.

Figure 4 shows draws from the prior predictive distribution of the sample standard

deviations of output growth, hours worked, the labor share, and inflation. These draws

are generated as follows. For a subset of our draws from the prior distributions of θ we

simulate samples of 100 observations from the DSGE model and compute sample standard

deviations. Under the standard prior the predictive distribution of these sample standard

deviations has fat tails. The figure shows many draws in which the standard deviation of

inflation exceeds 15, which is extreme given the U.S. post-war experience. Under the dummy

observations prior, the probability mass is shifted away from these extreme values and the

predictive distribution concentrates in a more plausible range.

5.4 Sticky Prices vs. Sticky Wages

This section discusses how nominal rigidities, sticky prices and wages, affect the model’s

ability to describe the data. We compare four specifications: i) the Benchmark model

described in Section 4, ii) the very same model without wage stickiness (ζw = 0), which

we refer to as the Flexible Wages model, iii) the Flexible Prices model, which has no price

stickiness (ζp = 0), and iv) the model without either wage or price stickiness (ζw = ζp = 0),

called Flexible Wages and Prices model. We show how the presence of nominal rigidities

changes the models’ implications for some important sample moments of the endogenous

variables using prior predictive distributions. In turn, we use these prior predictive checks to

help explain the model rankings obtained from Bayesian marginal likelihood comparisons.

Moreover, we document how the use of the dummy observation prior in place of the standard

prior changes the a priori model’s implications and, as a consequence, the marginal likelihood

values. Among others, papers by Rabanal and Rubio-Ramirez (2005), Smets and Wouters

(2003) and Christiano, Eichenbaum, and Evans (2005) have addressed the importance of

nominal rigidities in DSGE models. Our paper contributes to this literature by assessing

the robustness of previous findings to changes in the prior distribution of the DSGE model

parameters.

Figure 5 shows the prior predictive distributions for the sample autocorrelations of

inflation and the labor share. The top two panels compare the predictions for the Benchmark

and the Flexible Wages and Prices models. The middle two panels compare the Benchmark

and the Flexible Prices models, while the bottom two panels compare the Benchmark and
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the Flexible Wages models. The panels on the left use the standard prior while the two

panels on the right use the dummy observations prior with T ∗ = 10 dummy observations.

In each panel the dark crosses (+) and the lighter circles (©) represent draws from the

Benchmark and the alternative model, respectively. The dark and light lines show the

medians of the marginal prior predictive distributions for the two models. The thick gray

cross indicates the corresponding sample moments for the actual observations, which are

used to compute the marginal likelihood values reported in Table 5.

The comparison of the distribution of the dark crosses between the left-hand-side and

right-hand-side panels in Figure 5 shows that under the dummy observations prior the

Benchmark model’s predictions are more concentrated than under the standard prior. Under

both priors the Benchmark model generates large persistence in both inflation and the labor

share. Under the standard prior the median inflation and labor share autocorrelation are

about 0.86 and 0.92 respectively. On the contrary, for the Flexible Wages and Prices model

the autocorrelation of inflation is negative roughly fifty percent of the times under the

standard prior (top left panel). Under the dummy observations prior the predicted inflation

autocorrelation rises, but is not as high as that predicted by the Benchmark model (top

right panel).

Even under the standard prior the Flexible Prices model (left middle panel) is much

closer to the Benchmark in terms of its a priori predictions than the Flexible Wages and

Prices model. The median inflation and labor share autocorrelations are about 0.7 and

0.8, respectively. Under the dummy observations prior (right middle panel) the difference

between the Flexible Prices and the Benchmark models’ predictions narrows. The marginal

distribution for the autocorrelation of the labor share is roughly the same for the two models,

but the Flexible Prices model still predicts a slightly lower autocorrelation of inflation than

the Benchmark.

For the Flexible Wages model the standard prior implies that the predicted autocorre-

lation of inflation, while higher than for the Flexible Wages and Prices model, is still lower

than for the Benchmark model (bottom left panel). Under the dummy observations prior

the differences between the Benchmark and the Flexible Wages predictions for inflation au-

tocorrelation nearly disappear (bottom right panel). Differences in the predictions for the

autocorrelation in the labor share remain, however. Under the dummy observations prior

the median autocorrelation of the labor share is 0.63 for the Flexible Wages model. The

Flexible Wages model cannot generate the degree of persistence in the labor share afforded

by the presence of both nominal rigidities.
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An interesting feature of Figure 5 is that the two specification with flexible prices can

generate persistence in the labor share, even under the standard prior, while the Flexible

Wages is not able to do so under either prior. In order to explain this result, in Figure 6

we compare the impulse response functions for both models, computed for parameter values

corresponding to the mean of the dummy observations prior. The dashed, dash-and-dotted,

and solid lines represent the responses for the Flexible Wages and Prices, the Flexible Prices,

and the Flexible Wages models, respectively. If prices are flexible, then movements in the

labor share are solely due to the mark-up shock:

l̂sht = −λ̂f,t,

where ̂ denotes log deviations from the steady state. Hence, the persistence of the la-

bor share is directly determined by the autocorrelation of the mark-up shock. Figure 6

shows that the mark-up shock generates a negative correlation between inflation and the

labor share. As pointed out by by Gaĺı and Gertler (1999), such a negative correlation

is counterfactual. In our sample, the correlation is about 0.4. Hence, both models with

flexible prices face a trade-off when trying to simultaneously match the persistence in the

labor share and the positive correlation between the labor share and inflation, which has a

negative impact on its overall fit. Figure 6 also documents that the inflation responses in

the Flexible Wages and Prices model are generally short-lived, which is consistent with the

low inflation persistence documented in the top panels of Figure 5.

For the model with flexible prices and sticky wages, inflation responses to the leisure

preference shock φt and to technology shocks are quite persistent, resulting in an autocor-

relation of inflation close to the Benchmark’s. Yet this models suffers the same trade-off

as the Flexible Wages and Prices model in matching cross-correlations of inflation and the

labor share.

If wages are flexible and prices are sticky, the four other shocks affect the labor share as

well and their impulse responses are far less persistent than that of the mark-up shock. As

a consequence the autocorrelation of the labor share decreases relative to the flexible price

models, while inflation essentially remains as persistent as in the Benchmark model.

Table 4 summarizes the prior distributions for the shock parameters under the standard

and the dummy observation prior. The table shows that the dummy observations prior

generates changes in the persistence of the exogenous processes that differ in the three model

specifications, highlighting that each model provides a distinct propagation mechanism for

the exogenous shocks. The marginal distribution of the shock parameters shifts as follows
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relative to the standard prior. Across all models the mean of the standard deviation of

the technology shock, σz, increases by at least a factor of 5. In the Benchmark model the

autocorrelation of the mark-up shock, ρλf
increases while its volatility drops from 0.38 to

0.19. In the two specifications without price stickiness both the autocorrelation and the

volatility of λf,t increase as the shock process determines the law of motion for the labor

share. If wages are assumed to be flexible, the persistence and volatility of the government

spending shock rises.

Finally, Table 5 summarizes log marginal likelihood ratios relative to the Benchmark

model. In the last row of Table 5 we report the log marginal likelihood values for the

Benchmark model. The use of the dummy observations prior narrows the gap between the

Benchmark and the alternative models, which is consistent with the findings presented in

Figure 5. However, log marginal likelihood ratios are large even under the alternative prior.

The Flexible Wages model is in part penalized for its inability to reproduce the persistence in

the labor share series. The Flexible Prices model overall performs worse than the Flexible

Wages model. The reason for this ranking possibly lies in its inability to generate both

persistent labor share dynamics as well as a strong positive correlation between inflation

and the labor share. The specification in which both prices and wages are flexible performs

worst.

Direct comparison of our results with existing literature on estimated DSGE models on

U.S. data is difficult either because other studies use somewhat different data (or detrend

the data as in Rabanal and Rubio-Ramirez 2005), or a different model validation approach

(impulse responses to a monetary shock as in Christiano, Eichenbaum, and Evans 2005).

Still, it is important to put our findings in perspective. Christiano, Eichenbaum, and Evans

2005 find that wage rigidities are more important than price rigidities – indeed, that price

rigidities seem to matter very little. Our results on the importance of price rigidities, both

in absolute terms and relative to wage stickiness, are quite different. Partly that reflects the

inclusion of the labor share among our observables: as shown in Figure 6 the labor share does

not move at all after a monetary shock in absence of price stickiness, and this implication

may be counterfactual. In general, in our analysis the fit of flexible price models hinges on

whether mark-up shocks, the only ones that can move the labor share, can reproduce the

dynamic correlations between the labor share and the other endogenous variables. These

shocks are not considered in their analysis.8 Rabanal and Rubio-Ramirez (2005) do not

8There is an ongoing debate on the merits of limited information approaches, such as the one pursued

by Christiano, Eichenbaum, and Evans, and the full information approach used here. Valid arguments can
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assess the fit of a model without price stickiness, hence we cannot make any inference from

their study on the importance of sticky prices. Also, they use a model without capital

accumulation. They do find that wage stickiness is very important – the difference in log-

marginal likelihoods for the models with and without sticky wages is about 147, much larger

than what we find. An interesting question is to what extent the lack of real side frictions

in their model enhances the importance of wage stickiness. Finally, Smets and Wouters

(2003b) find that both sticky prices and sticky wages are important, with sticky prices

being more important than sticky wages. Relative to their benchmark model, which shares

many features with ours, the marginal likelihood drops by 226 and 26 log points when the ζp

and ζw parameters are set equal to .42, respectively. That is, these authors find very large

drop in fit by constraining the degree of price and wage stickiness, let alone eliminating it.

5.5 Assessing the Phillips Curve

This section focuses on the specification of the New Keynesian Phillips curve relationship,

which for our Benchmark model takes the following log-linear form:

π̂t = (1− ζpβ)(1− ζp)
(1 + ιpβ)ζp

[
l̂sht + λf

1 + λf
λ̂f,t

]
+ ιp

1 + ιpβ
π̂t−1 + β

1 + ιpβ
IEt[π̂t+1].

(46)

In terms of log deviations from the steady state the labor share l̂sht is identical to the

marginal costs. A large body of literature (Eichenbaum and Fisher 2003, Gaĺı and Gertler

1999, Sbordone 2002, Gaĺı, Gertler and Lopez-Salido 2005, Rudd and Whelan 2005, among

several others) has investigated whether the lagged inflation term π̂t−1 needs to be incor-

porated in order for the Phillips curve to adequately describe the dynamics of inflation.

While much of the literature studies the issue using single equation methods (Lindé, 2005,

and Rabanal and Rubio-Ramirez, 2005, are exceptions), we use full information methods.

The importance of lagged inflation is determined by the parameter ιp, which in this model

captures what Eichenbaum and Fisher (2003) call dynamic indexation, that is, the extent

to which prices for those firms that are not able to re-optimize are indexed by past inflation

rather than steady state inflation.

We therefore compare the Benchmark model, which allows for partial dynamic index-

ation for both firms and workers (ιp ∈ (0, 1), ιw ∈ (0, 1)), to the same model with No

Dynamic Indexation for either firms or workers (ιp = 0 ιw = 0). As shown in the Example 2

be made in favor of either approach. Here we simply emphasize how the full information implications of the

model drive our results on the importance of price rigidities.
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in Section 2, the choice of prior for a comparison of the three specifications is not innocuous:

a model that assigns a large coefficient to the lagged inflation term in (46) and imposes a

small autocorrelation in the mark-up shock, might generate similar dynamics as a model

without indexation and a persistent mark-up shock.

Figure 7 shows the a priori implications of the two specifications for two moments that

are important for the empirical assessment of the Phillips curve: the persistence of inflation

and the correlation between inflation and marginal costs. Gaĺı and Gertler (1999) have

argued that the positive correlation found in the data between inflation and the labor share

is prima facie evidence in support of the Phillips curve. We therefore investigate the prior

predictive distribution for these two moments generated by the Benchmark (dark +) and

the No-Dynamic-Indexation (light ©) model. As in Section 5.4, the left panel of Figure 7 is

based on the standard prior while the draws depicted in the right panel are obtained from

the dummy observations prior with T ∗ = 10. The dark and light lines show medians of

the predictive distributions for the two models. The thick gray cross signifies the sample

moments computed from the actual U.S. data.

The left panel shows that both model specifications are able to generate inflation per-

sistence under the standard prior, although quantitatively the median autocorrelation for

the No-Dynamic-Indexation model (0.72) is lower than for the Benchmark model (0.86).

The right two panel shows that under the dummy observations prior the difference between

the No-Dynamic-Indexation and the Benchmark model in terms of inflation autocorrelation

virtually disappears. The predictive distribution for the correlation of the labor share and

inflation is in general fairly diffuse for all models and priors. Draws range approximately

from -0.8 to 0.8, indicating that the DSGE model does not generate any sharp predictions

with respect to this correlation. The median correlation for the two models is slightly neg-

ative (less than -0.2) under the standard prior and about zero for the dummy observations

prior. As could be seen from the impulse-response functions in Figure 6, the mark-up shock

generates a negative correlation between inflation and the labor share. According to Table 4

the volatility of the mark-up shock drops under the dummy observations prior for both the

Benchmark and the No-Dynamic-Indexation model and hence the mark-up shock becomes

less important for the co-movement of inflation and the labor share. Log marginal likelihood

ratios are for the No-Dynamic-Indexation model, reported in Table 5, show that under the

dummy observation prior with T ∗ = 10 the two models are essentially equivalent and the

evidence in favor of dynamic indexation has vanished. The results here are in line with the

findings of Del Negro, Schorfheide, Smets and Wouters (2006), who show that the evidence
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from the impulse responses functions comparison between VAR and DSGE models in favor

of dynamic indexation is tenuous.

Our finding that the Benchmark model and the No-Dynamic-Indexation model are

essentially observationally equivalent seems to be at odds with the single-equation literature

on the New-Keynesian Phillips curve, which tends to emphasize the importance of lagged

inflation. The seemingly conflicting results can be reconciled by taking a closer look at

the role of the mark-up shock. As mentioned previously, in our model marginal costs are

identical to the labor share (in terms of log deviations). The mark-up shock in (46) has in

general two interpretations. On the one hand, it might capture changes in the degree of

monopolistic competition over the business cycle. On the other hand, in reality the labor

share might be an imperfect measure of marginal costs and the mark-up shock picks up this

misspecification. In both cases an autocorrelated mark-up shock serves as a substitute to

dynamic indexation in generating inflation persistence, as it captures the autocorrelation in

the residual of the purely forward-looking Phillips curve.

Figure 8 shows draws from the prior (©) and posterior (+) for the indexation parameter

ιp and the autocorrelation of the markup shock ρλf
under the standard and the dummy

observations prior. The prior draws of ιp and ρλf
are independent by construction. Under

the standard prior the posterior draws have a strong negative correlation. The marginal

posterior for ιp has most of its mass between 0.2 and 0.7. The dummy observation prior,

on the other hand, places more mass on higher values of the autocorrelation parameter, as

noted above. As a consequence, under this prior the marginal posterior on ιp concentrates

between 0 and 0.3. Since in general equilibrium the mark-up shock determines a large

fraction of the labor share dynamics, its estimated autocorrelation tends to be high. Yet,

once we have fairly persistent markup shocks, dynamic indexation is no longer needed in

the DSGE model. Single-equation generalized method of moments (GMM) estimates ignore

the λf,t term in (46), in part because latent variables are difficult to handle in a GMM

framework, and therefore find that lagged inflation is important to explain the inflation

data.

6 Conclusion

The careful specification of prior distributions is an important task in the Bayesian analysis

of DSGE models. Since the priors used in this literature tend to be rather informative,

priors do affect posterior parameter estimates as well as posterior model odds. For some
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DSGE model parameters we can elicit prior distributions directly, often based on micro-

level evidence as it has been done in the literature on calibrated equilibrium models for

about two decades now. For other parameters, including those that determine the law of

motion of the exogenous shocks, direct elicitation of prior distributions is very difficult. We

find it advantageous to elicit priors for these parameters based on beliefs about predictive

distributions. As one considers different model specifications, it seems reasonable to hold

the beliefs about the predictive distributions constant and implicitly construct a new prior

for the parameters of each model specification.

The contribution of this paper is to provide a procedure based on dummy observations

and a quasi-likelihood function for the DSGE model that automates the elicitation. We

apply our so-called dummy observation prior to a New Keynesian DSGE model and assess

the role of various features of the model. We compare a Benchmark specification to versions

of the model with flexible prices, flexible wages, and both. While the the use of the dummy

observation prior narrows the gap between the model, the Benchmark specification in which

both prices and wages remains to be preferred. We also show that once the dummy obser-

vation prior is used the small evidence in favor of dynamic indexation that we find under

the standard prior completely vanishes.

References

Altig, David, Lawrence Christiano, Martin Eichenbaum, and Jesper Lindé (2004): “Firm-
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Gaĺı, Jordi, and Mark Gertler (1999): “ Inflation Dynamics: A Structural Econometric

Analysis,” Journal of Monetary Economics, 44, 195-222.
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Table 1: Example 2 – Prior Distributions

Name Domain Density Para (1) Para (2)

pα(·) IR+ Gamma 2.00 0.10

pρ(·) [0, 1) Beta 0.50 0.05

pσ(·) IR+ InvGamma 1.00 4.00

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,

and Normal distributions; the upper and lower bound of the support for the Uniform distri-

bution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The effective prior is truncated at the boundary of the determinacy region.
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Table 2: Prior Distribution for Taste-and-Technology Parameters

Support Density Mean StdDev 90% LB 90% UB

α [0,1) Beta 0.400 0.100 0.234 0.562

ζp [0,1) Beta 0.600 0.200 0.292 0.935

ιp [0,1) Beta 0.500 0.280 0.061 0.942

s′ R+ Gamma 4.000 1.500 1.561 6.248

h [0,1) Beta 0.700 0.050 0.620 0.782

a′′ R+ Gamma 0.200 0.100 0.049 0.349

νl R+ Gamma 2.000 0.750 0.784 3.138

ζw [0,1) Beta 0.600 0.200 0.290 0.937

ιw [0,1) Beta 0.500 0.280 0.057 0.936

r∗ R+ Gamma 2.000 1.000 0.457 3.473

ψ1 R+ Gamma 1.550 0.370 0.990 2.089

ψ2 R+ Gamma 0.200 0.100 0.048 0.349

ρr [0,1) Beta 0.500 0.200 0.168 0.825

π∗ R Normal 3.000 1.500 0.556 5.435

γ R+ Gamma 2.000 1.000 0.475 3.469

λf R+ Gamma 0.150 0.100 0.010 0.288

g∗ R+ Gamma 0.300 0.100 0.141 0.457

Ladj R Normal 252.0 10.00 235.7 268.6

Notes: The prior distributions for the taste-and-technology parameters are identical for both

the standard and the dummy observations prior. StdDev denotes standard deviation, LB

and UB refer to lower and upper bounds of a 90% credible interval. The following parameters

are fixed: δ = 0.025, λw = 0.3, F = 0. We assume that the taste-and-technology parameters

are a priori independent.
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Table 3: Prior for Shock Parameters – Benchmark Model

Standard Prior Dummy Obs. Prior

Density Mean StdDev Initial Mean StdDev

ρz Beta 0.400 0.250 Uniform 0.489 0.129

ρφ Beta 0.750 0.250 Uniform 0.692 0.194

ρλf
Beta 0.750 0.250 Uniform 0.843 0.120

ρg Beta 0.750 0.250 Uniform 0.597 0.278

σz InvGamma 0.376 0.194 1/σz 1.549 0.388

σφ InvGamma 3.755 1.955 1/σφ 5.392 2.646

σλf
InvGamma 0.376 0.194 1/σλf

0.191 0.086

σg InvGamma 0.626 0.323 1/σg 0.577 0.204

σr InvGamma 0.250 0.130 1/σr 0.398 0.115

Notes: StdDev denotes standard deviation. The support for the distributions of the auto-

correlation (standard deviation) parameters is [0, 1) (R+). The column Initial refers to the

(improper) prior that is used to pre-multiply the quasi-likelihood function for the dummy

observations. The results are based on T ∗ = 10.
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Table 4: Prior for Shock Parameters - Standard vs Dummy Observation

Prior: Standard Dummy Obs. Dummy Obs. Dummy Obs. Dummy Obs. Dummy Obs.

Baseline Baseline Flex Wages
& Prices

Flex Prices Flex Wages No Dynamic
Indexation

ρz 0.400 (0.250) 0.489 (0.129) 0.326 (0.122) 0.520 (0.100) 0.332 (0.118) 0.490 (0.125)

ρφ 0.750 (0.250) 0.692 (0.194) 0.586 (0.338) 0.722 (0.166) 0.769 (0.199) 0.688 (0.204)

ρλf
0.750 (0.250) 0.843 (0.120) 0.884 (0.067) 0.896 (0.066) 0.799 (0.146) 0.872 (0.089)

ρg 0.750 (0.250) 0.597 (0.278) 0.922 (0.141) 0.512 (0.286) 0.840 (0.204) 0.625 (0.287)

σz 0.376 (0.194) 1.549 (0.388) 1.667 (0.405) 1.703 (0.412) 1.613 (0.371) 1.628 (0.393)

σφ 3.755 (1.955) 5.392 (2.646) 1.832 (0.918) 5.705 (2.327) 1.901 (0.783) 5.289 (2.837)

σλf
0.376 (0.194) 0.191 (0.086) 0.732 (0.172) 0.720 (0.171) 0.230 (0.084) 0.157 (0.056)

σg 0.626 (0.323) 0.577 (0.204) 0.822 (0.320) 0.376 (0.130) 0.789 (0.406) 0.570 (0.241)

σr 0.250 (0.130) 0.398 (0.115) 0.414 (0.132) 0.410 (0.098) 0.410 (0.101) 0.398 (0.109)

Notes: StdDev denotes standard deviation. The support for the distributions of the au-

tocorrelation (standard deviation) parameters is [0, 1) (R+). See Table 3 for the marginal

densities of the benchmark prior and the (improper) prior that is used to pre-multiply the

quasi-likelihood function for the dummy observations. The results are based on T ∗ = 10.
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Table 5: Log Marginal Likelihoods ln p(Y ) Relative to Benchmark

Specification Standard Dummy Obs. Prior

Prior T ∗ = 4 T ∗ = 10

Flexible Wages and Prices -65.36 -53.44 -52.76

Flexible Prices -44.92 -42.77 -38.76

Flexible Wages -23.23 -13.51 -16.74

No Indexation -0.63 -0.54 -0.22

Benchmark -611.95 -611.02 -614.31

Notes: The marginal likelihoods are computed based on quarterly U.S. data ranging from

QI:1981 to QIV:2005. We report ln p(Y |M0) for the Benchmark specification and log

marginal likelihood ratios for all other models. Negative entries indicate a deterioration

of fit relative to the Benchmark specification.
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Figure 1: Example 1 - Moments and Predictive Densities

Notes: Top panels depict 400 draws from the implicit prior distribution for mean and

autocorrelation of y for Model 2. Bottom panels depict draws from predictive distribution

for two observations, y1 and y2. Blue circles correspond to Model 2, green crosses to Model

1.
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Figure 2: Example 2 - Moments and Predictive Densities

Notes: Top panels depict 400 draws from the implicit prior distribution for mean and

autocorrelation of y for Model 2. Bottom panels depict draws from predictive distribution

for two observations, y1 and y2. Blue circles correspond to Model 2, green crosses to Model

1.
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Figure 3: Priors for Benchmark Model – Shock Parameters
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Notes: Each panel depicts draws from the prior distribution of the shock parameters. Grey
circles indicate draws from the standard prior, whereas black crosses correspond to draws
from the dummy observations prior.
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Figure 4: Priors for Benchmark Model - Sample Moments
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Notes: Each panel depicts draws from the prior predictive distribution of various sample
standard deviations, calculated based on 100 artificial observations from the DSGE model.
Grey circles indicate draws from the standard prior, whereas black crosses correspond to
draws from the dummy observations prior. The intersection of the red dotted lines signifies
the sample standard deviations computed from the pre-sample that is used to generate the
Γ matrices for the dummy observations prior.
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Figure 5: Nominal Rigidities: Benchmark versus Flex Wages / Prices Model
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Notes: Each panel depicts draws from the prior predictive distribution of the autocorrelation
of inflation and the labor share, calculated based on 100 artificial observations from the
DSGE model. Black cross correspond to draws from the Benchmark model, whereas gray
circles denote draws from the flexible price / wage models. The intersection of the solid
black and dashed gray lines signifies the median of the prior predictive distributions. The
thick gray cross indicates the corresponding moments for the data, i.e. the sample used in
the estimation.
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Figure 6: Impulse Response Functions - Flex Wages / Prices Models
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Notes: The left and right columns depict prior mean responses of the labor share and
inflation, respectively, to the five structural shocks for the Flexible Wages and Prices model
(dashed lines), the Flexible Wages/sticky prices model (black solid lines), and the Flexible
Prices/sticky wage model (gray dash-and-dotted lines). The impulse responses are computed
under the dummy observations prior.
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Figure 7: Assessing the Phillips Curve: Benchmark versus No Dynamic Indexation
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Notes: The top panels depict draws from the prior predictive distribution of the autocorre-
lation of inflation and the labor share, while the bottom panels depict draws from the prior
predictive distribution of the contemporaneous correlation between labor share and infla-
tion and labor share and output growth, respectively. The moments are calculated based
on 100 artificial observations from the DSGE model. Black cross correspond to draws from
the Benchmark model, whereas gray circles denote draws from the No Dynamic Indexation
model. The intersection of the solid black and dashed gray lines signifies the median of the
prior predictive distributions. The thick gray cross indicates the corresponding moments
for the data, i.e. the sample used in the estimation.
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Figure 8: Prior and Posterior Distribution of Dynamic Indexation Parameters and Mark-up

Shocks Autocorrelation
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Notes: Each panel depicts draws from the prior (gray circles) and the posterior (dark crosses)
distribution of the parameters ιp (dynamic indexation for prices), and ρλf

(autocorrelation
of the mark-up shock).


