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Abstract

Severe flight to quality episodes involve uncertainty about the environment and not only

risk about asset payoffs. The uncertainty is triggered by unusual events and untested

financial innovations that lead agents to question their world-view. We present a model

of crises and central bank policy that incorporates Knightian uncertainty. The model

can explain crisis regularities such as market-wide capital immobility, agents’ disengage-

ment from risk, and liquidity hoarding. We identify a social cost of these behaviors,

and a benefit of a lender of last resort facility. The benefit is particularly high because

public and private insurance are complements during uncertainty-driven crises.
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“... Policy practitioners operating under a risk-management paradigm may, at

times, be led to undertake actions intended to provide insurance against especially

adverse outcomes...... When confronted with uncertainty, especially Knightian

uncertainty, human beings invariably attempt to disengage from medium to long-

term commitments in favor of safety and liquidity... The immediate response on

the part of the central bank to such financial implosions must be to inject large

quantities of liquidity...” Alan Greenspan (2004).

Flight to quality episodes are an important source of financial and macroeconomic insta-

bility. Modern examples of these episodes in the US include the Penn Central default of 1970,

the stock market crash of 1987, the events of the Fall of 1998 beginning with the Russian de-

fault and ending with the bailout of LTCM, and the events that followed the attacks of 9/11.

Behind each of these episodes lies the specter of a meltdown that may lead to a prolonged

slowdown as in Japan during the 1990s, or even a catastrophe like the Great Depression.1 In

each of them, as hinted at by Greenspan (2004), the Fed intervened early and stood ready to

intervene as much as needed to prevent a meltdown.

In this paper we present a model to study the benefits of central bank actions during

flight to quality episodes. Our model has two key ingredients: capital/liquidity shortages and

Knightian uncertainty (Knight (1921)). The capital shortage ingredient is a recurring theme

in the empirical and theoretical literature on financial crises and requires little motivation.

Knightian uncertainty is less commonly studied, but practitioners perceive it as a central

ingredient to flight to quality episodes (see Greenspan’s quote).

Most flight to quality episodes are triggered by unusual or unexpected events. In 1970,

the Penn-Central Railroad’s default on prime rated commercial paper caught the market by

surprise and forced investors to re-evaluate their models of credit risk. The ensuing dynamics

temporarily shut out a large segment of commercial paper borrowers from a vital source of

funds. In October 1987, the speed of the stock market decline took investors and market

makers by surprise, causing them to question their models. Investors pulled back from the

market while key market-makers widened bid-ask spreads. In the fall of 1998, the comovement

of Russian government bond spreads, Brazilian spreads, and U.S. Treasury bond spreads

was a surprise to even sophisticated market participants. These high correlations rendered

standard risk management models obsolete, leaving financial market participants searching for

new models. Agents responded by making decisions using “worst-case” scenarios and “stress-

1See Table 1 (part A) in Barro (2006) for a list of extreme events, measured in terms of fall in GDP, in
developed economies during the 20th century.
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testing” models. Finally, after 9/11, regulators were concerned that commercial banks would

respond to the increased uncertainty over the status of other commercial banks by individually

hoarding liquidity and that such actions would lead to gridlock in the payments system.2

The common aspects of investor behavior across these episodes – re-evaluation of models,

conservatism, and disengagement from risky activities – indicate that these episodes involved

Knightian uncertainty (i.e., immeasurable risk) and not merely an increase in risk exposure.

The emphasis on tail outcomes and worst-case scenarios in agents’ decision rules suggests

uncertainty aversion. Finally, an important observation about these events is that when

it comes to flight to quality episodes, history seldom repeats itself. Similar magnitudes of

commercial paper default (Mercury Finance in 1997) or stock market pullbacks (mini-crash

of 1989) did not lead to similar investor responses. Today, as opposed to in 1998, market

participants understand that correlations should be expected to rise during periods of reduced

liquidity. Creditors understand the risk involved in lending to hedge funds. While in 1998

hedge funds were still a novel financial vehicle, the large reported losses of the Amaranth

hedge fund in 2006 barely caused a ripple in financial markets. The one-of-a-kind aspect

of flight to quality episodes suggests that these events are fundamentally about uncertainty

rather than risk.3

Section I of the paper lays out a model of financial crises based on liquidity shortages

and Knightian uncertainty. We analyze the model’s equilibrium and show that an increase

in Knightian uncertainty or decrease in aggregate liquidity can reproduce flight to quality

effects. In the model, when an agent is faced with Knightian uncertainty, he considers the

worst-case among the scenarios over which he is uncertain. This modeling of agent decision

making and Knightian uncertainty draws from the decision-theory literature, and in particu-

lar from Gilboa and Schmeidler (1989). When the aggregate quantity of liquidity is limited,

the Knightian agent grows concerned that he will be caught in a situation where he needs

liquidity, but there is not enough liquidity available to him. In this context, agents react by

shedding risky financial claims in favor of safe and uncontingent claims. Financial interme-

diaries become self-protective and hoard liquidity. Investment banks and trading desks turn

conservative in their allocation of risk capital. They lock up capital and become unwilling to

2See Calomiris (1994) on the Penn-Central default, Melamed (1988) on the 1987 market crash, Scholes
(2000) on the events of 1998, and Stewart (2002) or McAndrews and Potter (2002) on 9/11.

3This observation suggests a possible way to empirically disentangle uncertainty aversion from risk aversion
or extreme forms of risk aversion such as negative skew aversion. A risk averse agent behaves conservatively
during times of high risk – it does not matter whether the risk involves something new or not. For an
uncertainty averse agent, new forms of risk elicit the conservative reaction.

2



flexibly move it across markets.

The main results of our paper are in Sections II and III. As indicated by former Fed

Chairman Greenspan’s comments, the Fed has historically intervened during flight to quality

episodes. We analyze the macroeconomic properties of the equilibrium and study the effects

of central bank actions in our environment. First, we show that Knightian uncertainty leads

to a collective bias in agents’ actions: Each agent covers himself against his own worst-case

scenario, but the scenario that the collective of agents are guarding against is impossible, and

known to be so despite agents’ uncertainty about the environment. We show that agents’

conservative actions such as liquidity hoarding and locking-up of capital are macroeconomi-

cally costly because scarce liquidity goes wasted. Second, we show that central bank policy

can be designed to alleviate the over-conservatism. A lender of last resort (LLR), even one

facing the same incomplete knowledge that triggers agents’ Knightian responses, finds that

committing to add liquidity in the unlikely event that the private sector’s liquidity is de-

pleted is beneficial. Agents respond to the LLR by freeing-up capital and altering decisions

in a manner that wastes less private liquidity. Public and private provision of insurance are

complements in our model: each pledged dollar of public intervention in the extreme event is

matched by a comparable private sector reaction to free-up capital. In this sense, the Fed’s

LTCM restructuring was important not for its direct effect, but because it served as a signal

of the Fed’s readiness to intervene should conditions worsen. We also show that the LLR

must be a last-resort policy: If liquidity injections take place too often, the policy exacerbates

the private sector’s mistakes and reduces the value of intervention. This occurs for reasons

akin to the moral hazard problem identified with the LLR.

Our model is most closely related to the literature on banking crises initiated by Diamond

and Dybvig (1983).4 While our environment is a variant of Diamond and Dybvig’s, it does

not include the sequential service constraint of Diamond and Dybvig, and instead emphasizes

Knightian uncertainty. The change in modeling leads to different applications of our crisis

model. The model applies to a wider set of financial intermediaries than commercial banks

financed by demandable deposit contracts. More importantly, because our model of crises

centers on Knightian uncertainty, its insights most directly apply to circumstances of market-

wide uncertainty, such as the new financial innovations or events we have discussed above.

At a theoretical level, the sequential service constraint in the Diamond and Dybvig model

creates a coordination failure. The bank “panic” occurs because each depositor runs con-

4The literature on banking crises is too large to discuss here. See Gorton and Winton (2003) for a survey
of this literature.
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jecturing that other depositors will run. The externality in the depositor’s run decisions is

central to their model of crises.5 In our model, it is an increase in Knightian uncertainty

that generates the panic behavior. Of course, crises in reality may reflect both the type of

externalities that Diamond and Dybvig highlight and the uncertainties that we study. In the

Diamond and Dybvig analysis, the LLR is always beneficial because it rules out the “bad” run

equilibrium caused by the coordination failure.6 As noted above, our model’s prescriptions

center on situations of market-wide uncertainty. In particular, our model prescribes that the

benefit of the LLR is highest when there is both insufficient aggregate liquidity and Knightian

uncertainty.

Holmstrom and Tirole (1998) study how a shortage of aggregate collateral limits private

liquidity provision (see also Woodford (1990)). Their analysis suggests that a credible govern-

ment can issue government bonds which can then be used by the private sector for liquidity

provision. The key difference between our paper and those of Holmstrom and Tirole and

Woodford is that we show that aggregate collateral may be inefficiently used, so that private

sector liquidity provision is limited. In our model, the government intervention not only adds

to the private sector’s collateral but also, and more centrally, it improves the use of private

collateral.

Routledge and Zin (2004) and Easley and O’Hara (2005) are two related analyses of

Knightian uncertainty in financial markets.7 Routledge and Zin begin from the observation

that financial institutions follow decision rules to protect against a worst case scenario. They

develop a model of market liquidity in which an uncertainty averse market maker sets bids

5More generally, other papers in the crisis literature also highlight how investment externalities can exac-
erbate crises. Some examples in this literature include Allen and Gale (1994), Gromb and Vayanos (2002),
Caballero and Krishnamurthy (2003), or Rochet and Vives (2004). In many of these models, incomplete
markets leads to an inefficiency that creates a role for central bank policy (see Rochet and Vives (2004) or
Allen and Gale (2005))

6Rochet and Vives (2004) and Goldstein and Pauzner (2005) present variants of the Diamond and Dybvig
(1983) which have a unique equilibrium. By applying global games techniques, they eliminate the multiplicity
of equilibria in the Diamond and Dybvig model. Moreover, they show that an investment externality (coor-
dination failure) remains among the bank’s creditors in the unique equilibrium. Like us, Rochet and Vives
show that the LLR is only necessary when the value of bank assets are below a threshold.

7There is a growing economics literature that aims to formalize Knightian uncertainty (a partial list of
contributions includes, Gilboa and Schmeidler (1989), Dow and Werlang (1992), Epstein and Wang (1994),
Epstein (2001), Hansen and Sargent (1995, 2003), Skiadas (2003), Epstein and Schneider (2004), and Hansen,
et al. (2004)). As in much of this literature, we use a max-min device to describe agents expected utility.
Our treatment of Knightian uncertainty is most similar to Gilboa and Schmeidler, in that agents choose a
worst case among a class of priors.
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and asks to facilitate trade of an asset. Their model captures an important aspect of flight

to quality: uncertainty aversion can lead to a sudden widening of the bid-ask spread, causing

agents to halt trading and reducing market liquidity. Both our paper and Routledge and Zin

share the emphasis on financial intermediation and uncertainty aversion as central ingredients

in flight to quality episodes. But each paper captures different aspects of flight to quality.

Easley and O’Hara (2005) study a model where uncertainty averse traders focus on a worst

case scenario when making an investment decision. Like us, Easley and O’Hara point out

that government intervention in a worst-case scenario can have large effects. Easley and

O’Hara study how uncertainty aversion affects investor participation in stock markets, while

the focus of our study is on uncertainty aversion and financial crises.

I. The Model

We study a model conditional on entering a turmoil period where liquidity risk and Knigh-

tian uncertainty coexist. Our model is silent on what triggers the episode. In practice, we

think that the occurrence of an unusual event, such as the Penn Central default or 9/11,

causes agents to re-evaluate their models and triggers robustness concerns. Our goal is to

present a model to study the role of a centralized liquidity provider such as the central bank.

A. The Environment

PREFERENCES AND SHOCKS

The model has a continuum of competitive agents, which are indexed by ω ∈ Ω ≡ [0, 1].

An agent may receive a liquidity shock in which he needs some liquidity immediately. We

view these liquidity shocks as a parable for a sudden need for capital by a financial market

specialist (e.g. a trading desk, hedge fund, market maker).

The shocks are correlated across agents. With probability φ(1), the economy is hit by a

first-wave of liquidity shocks. In this wave, a randomly chosen group of one-half of the agents

have liquidity needs. We denote the probability of agent ω receiving a shock in the first wave

by φω(1), and note that, ∫
Ω

φω(1)dω =
φ(1)

2
. (1)

Equation (1) states that on average, across all agents, the probability of an agent receiving a

shock in the first wave is φ(1)
2

.
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With probability φ(2|1), a second wave of liquidity shocks hits the economy. In the second

wave of liquidity shocks, the other half of the agents need liquidity. Let φ(2) = φ(1)φ(2|1).
The probability for agent ω of being in this second wave is φω(2), which satisfies,∫

Ω

φω(2)dω =
φ(2)

2
. (2)

With probability 1 − φ(1) > 0 the economy experiences no liquidity shocks.

We note that the sequential shock structure means that,

φ(1) > φ(2) > 0. (3)

This condition states that, in aggregate, a single-wave event is more likely than the two-wave

event. We refer to the two-wave event as an extreme event, capturing an unlikely but severe

liquidity crisis in which many agents are affected. Relation (3), deriving from the sequential

shock structure, plays an important role in our analysis.

We model the liquidity shock as a shock to preferences (e.g., as in Diamond and Dybvig

(1983)). Agent ω receives utility:

Uω(c1, c2, cT ) = α1u(c1) + α2u(c2) + βcT . (4)

We define α1 = 1, α2 = 0 if the agent is in the early wave; α1 = 0, α2 = 1 if the agent is in

the second wave; and, α1 = 0, α2 = 0 if the agent is not hit by a shock. We will refer to the

first shock date as “date 1,” the second shock date as “date 2,” and the final date as “date

T.”

The function u : R+ → R is twice continuously differentiable, increasing, strictly concave

and satisfies the condition limc→0 u
′(c) = ∞. Preferences are concave over c1 and c2 and

linear over cT . We view the preference over cT as capturing a time, in the future, when

market conditions are normalized and the trader is effectively risk neutral. The concave

preferences over c1 and c2 reflect the potentially higher marginal value of liquidity during a

time of market distress. The discount factor, β, can be thought of as an interest rate ( 1
β
− 1)

facing the trader.

ENDOWMENT AND SECURITIES

Each agent is endowed with Z units of goods. These goods can be stored at gross return

of one, and then liquidated if an agent receives a liquidity shock. If we interpret the agents

of the model as financial traders, we may think of Z as the capital or liquidity of a trader.
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Agents can also trade financial claims that are contingent on shock realizations. As we

will show, these claims allow agents who do not receive a shock to insure agents who do

receive a shock.

We assume all shocks are observable and contractible. There is no concern that an agent

will pretend to have a shock and collect on an insurance claim. Markets are complete. There

are claims on all histories of shock realizations. We will be more precise in specifying these

contingent claims when we analyze the equilibrium.

PROBABILITIES AND UNCERTAINTY

Agents trade contingent claims to insure against their liquidity shocks. In making the

insurance decisions, agents have a probability model of the liquidity shocks in mind.

We assume that agents know the aggregate shock probabilities, φ(1) and φ(2). We may

think that agents observe the past behavior of the economy and form precise estimates of

these aggregate probabilities. However, and centrally to our model, the same past data does

not reveal whether a given ω is more likely to be in the first wave or the second wave. Agents

treat the latter uncertainty as Knightian.

Formally, we use φω(1) to denote the true probability of agent ω receiving the first shock,

and φω
ω(1) to denote agent-ω’s perception of the relevant true probability (similarly for φω(2)

and φω
ω(2)). We assume that each agent ω knows his probability of receiving a shock either

in the first or second wave, φω(1) + φω(2), and thus the perceived probabilities satisfy:8

φω
ω(1) + φω

ω(2) = φω(1) + φω(2) =
φ(1) + φ(2)

2
. (5)

We define,

θω
ω ≡ φω

ω(2) − φ(2)

2
. (6)

That is, θω
ω reflects how much agent ω’s probability assessment of being second is higher

than the average agent in the economy’s true probability of being second. This relation also

implies that,

−θω
ω = φω

ω(1) − φ(1)

2
.

Agents consider a range of probability-models θω
ω in the set Θ, with support [−K,+K]

(K < φ(2)/2)), and design insurance portfolios that are robust to their model uncertainty. We

follow Gilboa and Schmeidler’s (1989) Maximin Expected Utility representation of Knightian

8For further clarification of the structure of shocks and agents’ uncertainty, see the event tree that is
detailed in the Appendix.
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uncertainty aversion and write:

max
(c1,c2,cT )

min
θω
ω∈Θ

E0[U
ω(c1, c2, cT )|θω

ω] (7)

where K captures the extent of agents’ uncertainty.

In a flight to quality event, such as the Fall of 1998 or 9/11, agents are concerned about

systemic risk and unsure of how this risk will impinge on their activities. They may have a

good understanding of their own markets, but are unsure of how the behavior of agents in

other markets may affect them. For example, during 9/11 market participants feared gridlock

in the payments system. Each participant knew how much he owed to others but was unsure

whether resources owed to him would arrive (see, e.g., Stewart (2002), or McAndrews and

Potter (2002)). In our modeling, agents are certain about the probability of receiving a shock,

but are uncertain about the probability that their shocks will occur early relative to others,

or late relative to others.

We view agents’ max-min preferences in (7) as descriptive of their decision rules. The

widespread use of worst-case scenario analysis in decision making by financial firms is an

example of the robustness preferences of such agents.

It is also important to note that the objective function in (7) works through altering

the probability distribution used by agents. That is, given an agent’s uncertainty, the min

operator in (7) has the agent making decisions using the worst-case probability distribution

over this uncertainty. This objective is different from one which asymmetrically penalizes bad

outcomes. That is, a loss aversion or negative skewness aversion objective function leads an

agent to worry about worst-cases through the utility function Uω directly. This asymmetric

utility function model predicts that agents always worry about the downside. Our Knightian

uncertainty objective predicts that agents worry about the downside in particular during

times of model uncertainty. As discussed in the introduction, it appears that flight to quality

episodes have a “newness/uncertainty” element, which our modeling can capture.

The distinction is also relevant because probabilities have to satisfy adding up constraints

across all agents – i.e.
∫
Ω
θωdω = 0. Indeed, the term “collective” bias we use refers to a

situation when agents’ individual probability distributions from the min operator in (7) fails

to satisfy an adding up constraint. As we will explain, the efficiency results we present later

in the paper stem from this aspect of our model.

SYMMETRY

To simplify our analysis we assume that the agents are symmetric at date 0. While each

agent’s true θω may be different, the θω for every agent is drawn from the same Θ.
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The symmetry applies in other dimensions as well: φω, K, Z, and u(c) are the same for

all ω. Moreover, this information is common knowledge. As noted above, φ(1) and φ(2) are

also common knowledge.

B. A Benchmark

We begin by analyzing the problem when K = 0. This case clarifies the nature of cross-

insurance that is valuable in our economy as well. We derive the equilibrium as a solution to

a planning problem, where the planner allocates the Z across agents as a function of shock

realizations.

Figure 1 below describes the event tree of the economy. The economy may receive zero,

one, or two waves of shocks. An agent ω may be affected in the first or second wave in the

two wave case, or may be affected or not affected in the one wave event. We denote s = ( #

of waves, ω’s shock) as the state for agent ω. Agent ω’s allocation as a function of the state

is denoted by Cs where in the event of agent ω being affected by a shock, the agent receives

a consumption allocation upon incidence of the shock, as well as a consumption allocation

at date T . For example, if the economy is hit by two waves of shocks in which agent ω is

affected by the first wave, we denote the state as s = (2, 1) and agent ω’s allocation as (c1, c
s
T ).

C = {Cs} is the consumption plan for agent ω (equal to that for every agent, by symmetry).

We note that c1 is the same in both state (2, 1) and state (1, 1). This is because of the

sequential shock structure in the economy. An agent who receives a shock first needs resources

at that time, and the amount of resources delivered cannot be made contingent on whether

the one or two wave event transpires.

Figure 1 also gives the probabilities of each state s. Since agents are ex-ante identical

and K = 0, each agent has the same probability of arriving at state s. Thus we know that

φω(2) = φ(2)/2, which implies that the probability of ω being hit by a shock in the second

wave is one-half. Likewise, the probability of ω being hit by a shock in the first wave is

one-half. These computations lead to the probabilities given in Figure 1.

The planner’s problem is to solve,

max
C

∑
psUω(Cs)

subject to resource constraints that for every shock realization, the promised consumption

9
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ω 2nd

Prob φ(1) − φ(2)

ω 1st

ω not hit

No Shocks

s = (# waves, ω’s shock)

(2,1)

(2,2)

(1,1)

(1,no)

(0,no)

ps

φ(2)/2

φ(2)/2

(φ(1) − φ(2))/2

(φ(1) − φ(2))/2

1 − φ(1)

Cs

(c1, c
2,1
T )

(c2, c
2,2
T )

(c1, c
1,1
T )

(c1,no
T )

(c0,no
T )

Figure 1. Benchmark case. The tree on the left pictures the possible states realized for agent

ω. The economy can go through zero (lower branch), one (middle branch), or two (upper branch) waves

of shocks. In each of these cases, agent ω may or may not be affected. The first column lists the state,

s, for agent ω corresponding to that branch of the tree. The second column lists the probability of state

s occurring. The last column lists the consumption bundle given to the agent by the planner in state s.

amounts are not more than the total endowment of Z:

c0,no ≤ Z
1

2

(
c1 + c1,1

T + c1,no
T

) ≤ Z

1

2

(
c1 + c2,1

T + c2 + c2,2
T

) ≤ Z,

as well as non-negativity constraints that for each s, every consumption amount in Cs is

non-negative.

It is obvious that if shocks do not occur, then the planner will give Z to each of the agents

for consumption at date T . Thus c0,no
T = Z and we can drop this constant from the objective.

We rewrite the problem as:

max
C

φ(1) − φ(2)

2

(
u(c1) + βc1,1

T + βc1,no
T

)
+
φ(2)

2

(
u(c1) + u(c2) + βc2,1

T + βc2,2
T

)
subject to resource and non-negativity constraints.

Observe that c1,1
T and c1,no

T enter as a sum in both objective and constraints. Without

loss of generality we set c1,1
T = 0. Likewise, c2,1

T and c2,2
T enter as a sum in both objective and
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constraints. Without loss of generality we set c2,1
T = 0. The reduced problem is:

max
(c1,c2,c1,no

T ,c2,2
T )

φ(1)u(c1) + φ(2)(u(c2) + βc2,2
T ) + (φ(1) − φ(2)) βc1,no

T

subject to:

c1 + c1,no
T = 2Z

c1 + c2 + c2,2
T = 2Z

c1, c2, c
1,no
T , c2,2

T ≥ 0.

Note that the resource constraints must bind. The solution hinges on whether the non-

negativity constraints on consumption bind or not.

If the non-negativity constraints do not bind, then the first order condition for c1 and c2

yield:

c1 = c2 = u′−1(β) ≡ c∗.

The solution implies that,

c2,2
T = 2(Z − c∗), c1,no

T = 2Z − c∗.

Thus the non-negativity constraints do not bind if Z ≥ c∗. We refer to this case as one of suf-

ficient aggregate liquidity. When Z is large enough, agents are able to finance a consumption

plan in which marginal utility is equalized across all states. At the optimum, agents equate

the marginal utility of early consumption with that of date T consumption, which is β given

the linear utility over cT . A low value of β means that agents discount the future heavily and

require more early consumption. Loosely speaking we can think of this case as one where an

agent is “constrained” and places a high value on current liquidity. As a result, the economy

needs more liquidity (Z) to satisfy agents’ needs.

Now consider the case in which there is insufficient liquidity so that agents are not able

to achieve full insurance. This is the case where Z < c∗. It is obvious that c2,2
T = 0 in this

case (i.e. use all of the limited liquidity towards shock states). Thus, for a given c1 we have

that c2 = c1,no
T = 2Z − c1 and the problem is,

max
c1

φ(1)u(c1) + φ(2)u(2Z − c1) + (φ(1) − φ(2))β(2Z − c1) (8)

with first order condition,

u′(c1) =
φ(2)

φ(1)
u′(2Z − c1) + β

(
1 − φ(2)

φ(1)

)
. (9)
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Since u′(2Z − c1) > β (i.e. c2 < c∗) we can order:

β < u′(c1) < u′(2Z − c1) ⇒ c1 > Z. (10)

The last inequality on the right of (10) is the important result from the analysis. Agents

who are affected by the first-wave of shocks receive more liquidity than agents who are affected

by the second-wave. There is cross-insurance between agents. Intuitively, this is because the

probability of the second-wave occurring is strictly smaller than that of the first-wave (or,

equivalently, conditional on the first wave having taken place there is a chance the economy

is spared of a second wave). Thus, when liquidity is scarce (small Z) it is optimal to allocate

more of the limited liquidity to the more likely shock. On the other hand, when liquidity is

plentiful (large Z) the liquidity allocation of each agent is not contingent on the order of the

shocks. This is because there is enough liquidity to cover all shocks.

We summarize these results as follows:

PROPOSITION 1 : The equilibrium in the benchmark economy with K = 0 has two cases:

• The economy has insufficient aggregate liquidity if Z < c∗. In this case,

c∗ > c1 > Z > c2.

Agents are partially insured against liquidity shocks. First wave liquidity shocks are

more insured than second wave liquidity shocks.

• The economy has sufficient aggregate liquidity if Z ≥ c∗. In this case,

c1 = c2 = c∗

and agents are fully insured against liquidity shocks.

Flight to quality effects, and a role for central bank intervention, arise only in the first case

(insufficient aggregate liquidity). This is the case we analyze in detail in the next sections.

C. Implementation

There are two natural implementations of the equilibrium: financial intermediation, and

trading in shock-contingent claims.

In the intermediation implementation, each agent deposits Z in an intermediary initially

and receives the right to withdraw c1 > Z, if he receives a shock in the first-wave. Since
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shocks are fully observable, the withdrawal can be conditioned on the agents’ shocks. Agents

who do not receive a shock in the first wave own claims to the rest of the intermediary’s

assets (Z − c1 < c1). The second group of agents either redeem their claims upon incidence

of the second wave of shocks, or at date T . Finally, if no shocks occur, the intermediary is

liquidated at date T and all agents receive Z.

In the contingent claims implementation, each agent purchases a claim that pays 2(c1 −
Z) > 0 in the event that the agent receives a shock in the first wave. The agent sells an

identical claim to every other agent, paying 2(c1 − Z) in case of the first wave shock. Note

that this is a zero-cost strategy since both claims must have the same price.

If no shocks occur, agents consume their own Z. If an agent receives a shock in the first

wave, he receives 2(c1 − Z) and pays out c1 − Z (since one-half of the agents are affected in

the first wave), to net c1 −Z. Added to his liquidity of Z, this gives total liquidity of c1. Any

later agent has Z − (c1 − Z) = 2Z − c1 units of liquidity to either finance a second shock, or

as date T consumption.

Finally, note that if there is sufficient aggregate liquidity either the intermediation or

contingent claims implementation achieves the optimal allocation. Moreover, in this case,

the allocation is also implementable by self-insurance. Each agent keeps his Z and liquidates

c∗ < Z to finance a shock. The self-insurance implementation is not possible when Z < c∗,

because the allocation requires each agent to receive more than his endowment of Z if the

agent is hit first.

D. K > 0 Robustness Case

We now turn to the general problem when K > 0. Once again, we derive the equilibrium

by solving a planning problem where the planner allocates the Z to agents as a function of

shocks. When K > 0, agents make decisions based on a “worst-case” for the probabilities.

This decision making process is encompassed in the planning problem by altering the planner’s

objective to,

max
C

min
θω
ω∈Θ

∑
ps,ωU(Cs) (11)

The only change in the problem relative to the K = 0 case is that probabilities are based on

the worst-case min rule.

Figure 2 redraws the event tree now indicating agent’s worst-case probabilities. We use

the notation that φω
ω(2) is agent ω’s worst-case probability of being hit second. In our setup,

this assessment only matters when the economy is going through a two-wave event in which
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the agent is unsure if other agents’ shocks are going to occur before or after agent ω’s.9
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No Shocks

s = (# waves, ω’s shock)

(2,1)

(2,2)

(1,1)

(1,no)

(0,no)

ps,ω

φω
ω(1) − φ(1)−φ(2)

2

φω
ω(2)

(φ(1) − φ(2))/2

(φ(1) − φ(2))/2

1 − φ(1)

Figure 2. Robustness case. The tree on the left pictures the possible states realized for agent

ω. The economy can go through zero (lower branch), one (middle branch), or two (upper branch) waves

of shocks. In each of these cases, agent ω may or may not be affected. The first column lists the state,

s, for agent ω corresponding to that branch of the tree. The second column lists the agent’s perceived

probability of state s occurring.

We simplify the problem following some of the steps of the previous derivation. c0,no
T must

be equal to Z. Since the problem in the one-wave node is the same as in the previous case, we

observe that c1,1
T and c1,no

T enter as sum in both objective and constraint and choose c1,1
T = 0.

The reduced problem is then,

V (C; θω
ω) ≡ max

C
min
θω
ω∈Θ

φω
ω(1)u(c1)+(φ(2) − φω

ω(2))βc2,1
T +φω

ω(2)
(
u(c2) + βc2,2

T

)
+
φ(1) − φ(2)

2
βc1,no

T

(12)

The first two terms in this objective are the utility from the consumption bundle if the agent

is hit first (either in the one wave or two wave event). The third term is the utility from the

consumption bundle if the agent is hit second. The last term is the utility from the bundle

when the agent is not hit in a one-wave event.

9We derive the probabilities as follows. p2,2,ω = φω
ω(2) by definition. This implies that p2,1,ω = φ(2)−φω

ω(2)
since the probabilities have to sum up to the probability of a two wave event (φ(2)). We rewrite p2,1,ω =
φ(2)−φω

ω(2) = φω
ω(1)−φ(1)−φ(2)

2 using relation (5). The probability of ω being hit first is φω
ω(1) = p2,1,ω+p1,1,ω.

Substituting for p2,1,ω, we can rewrite this to find that p1,1,ω = φ(1)+φ(2)
2

. Finally, p1,1,ω+p1,no,ω = φ(1)−φ(2),
which we can use to solve for p1,no,ω.
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The resource constraints for this problem are,

c1 + c1,no
T ≤ 2Z

c1 + c2 + c2,1
T + c2,2

T ≤ 2Z.

The optimization is also subject to non-negativity constraints.

PROPOSITION 2 : Let:

K̄ ≡ φ(1) − φ(2)

4

(
u′(Z) − β

u′(Z)

)
.

Then, the equilibrium in the robust economy depends on both K and Z as follows:

• When there is insufficient aggregate liquidity, there are two cases:

– For 0 ≤ K < K̄, agents’ decisions satisfy:

φω
ω(1)u′(c1) = φω

ω(2)u′(c2) + β
φ(1)− φ(2)

2
. (13)

where, the worst-case probabilities are based on θω
ω = K:

φω
ω(1) =

φ(1)

2
−K, φω

ω(2) =
φ(2)

2
+K.

In the solution,

c2 < Z < c1 < c∗

with c1(K) decreasing and c2(K) increasing. We refer to this as the “partially

robust” case.

– For K ≥ K̄, agents’ decisions are as if K = K̄, and

c1 = Z = c2 < c∗.

We refer to this as the “fully robust” case.

• When there is sufficient aggregate liquidity (Z), agents’ decisions satisfy,

c1 = c2 = c∗ < Z.
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The formal proof of the proposition is in the Appendix, and is complicated by the need

to account for all possible consumption plans for every given θω
ω scenario when solving the

max-min problem. But, there is a simple intuition that explains the results.

We show in the Appendix that c2,1
T , and c2,2

T are always equal to zero. Dropping these

controls, the problem simplifies to:

max
c1,c2,c1,no

T

min
θω
ω∈Θ

φω
ω(1)u(c1) + φω

ω(2)u(c2) +
φ(1) − φ(2)

2
βc1,no

T .

For the case of insufficient aggregate liquidity, the resource constraints give:

c2 = 2Z − c1, c1,no
T = 2Z − c1.

Then the first order condition for the max problem for a given value of θω
ω is,

φω
ω(1)u′(c1) = φω

ω(1)u′(c2) + β
φ(1) − φ(2)

2
.

In the benchmark case, the uncertain probabilities are φω
ω(1) = φ(1)

2
and φω

ω(2) = φ(2)
2

, which

yields the solution calling for more liquidity to whoever is affected by the first shock (c1 > c2).

When K > 0, agents are uncertain over whether their shocks are early or late relative to other

agents. Under the max-min decision rule, agents use the worst case probability in making

decisions. Thus, they bias up the probability of being second relative to that of being first.10

When K is small, agents’ first order condition is,(
φ(1)

2
−K

)
u′(c1) =

(
φ(2)

2
+K

)
u′(c2) + β

φ(1) − φ(2)

2
.

As K becomes larger, c2 increases toward c1. For K sufficiently large, c2 is set equal to c1.

This defines the threshold of K̄. In this “fully robust” case, agents are insulated against their

uncertainty over whether their shocks are likely to be first or second.

E. Flight to Quality

A flight to quality episode can be understood in our model as a comparative static across

K. To motivate this comparative static within our model, let us introduce a date −1 as a

10In the solution, agents have distorted beliefs and in particular disagree: Agent ω thinks his θω = K, but
he also knows that

∫
ω∈Ω θωdω = 0. That is, a given agent thinks that all other agents on average have a

θω = 0, but the agent himself has the worst case θ. This raises the question of whether it is possible for the
planner to design a mechanism that exploits this disagreement in a way that agents end up agreeing. We
answer this question in the Appendix, and conclude that allowing for a fuller mechanism does not alter the
solution.
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contracting date for agents. Each agent has Z < c∗ units of the good at this date and has

preferences as described earlier (only over consumption at date T and/or date 1, 2). At date

0, a value of K is realized to be either K = 0 or K > 0. The K > 0 event is a low probability

unusual event which may trigger a flight to quality. For example, the K > 0 event may

be that the downgrade of a top name is imminent in the credit derivatives market. Today

(i.e. date −1) market participants know that such an event may transpire and also are aware

that in the event there will be considerable uncertainty over outcomes. At date −1, agents

enter into an arrangement, where the terms of the contract are contingent on the state K, as

dictated by Proposition 2. We can think of the flight to quality in comparing the contracts

across the states.11

In this subsection we discuss three concrete examples of flight to quality events in the

context of our model. Our first two examples identify the model in terms of the financial

intermediation implementation discussed earlier, while the last example identifies the model

in terms of the contingent claims implementation.

The first example is one of uncertainty-driven contagion and is drawn from the events of

the fall of 1998. We interpret the agents of our model as the trading desks of an investment

bank. Each trading desk concentrates in a different asset market. At date −1 the trading

desks pool their capital with a top-level risk manager of the investment bank, retaining c2 of

capital to cover any needs that may arise in their particular market (“committed capital”).

They also agree that the top-level risk manager will provide an extra c1 − c2 > 0 to cover

shocks that hit whichever market needs capital first (“trading capital”). At date 0, Russia

defaults. An agent in an unrelated market – i.e. a market in which shocks are now no more

likely then before, so that φω
ω(1) + φω

ω(2) is unchanged – suddenly becomes concerned that

other trading desks will suffer shocks first and therefore the agent’s trading desk will not

have as much capital available in the event of a shock. The agent responds by lobbying the

top-level risk manager to increase his committed capital up to a level of c2 = c1. As a result,

every trading desk now has less capital in the (likelier) event of a single shock. Scholes (2000)

11An alternative way to motivate the comparative static is in terms of rewriting of contracts. Suppose that
it is costless to write contracts at date −1, but that it costs a small amount ε to write contracts at date 0.
Then it is clear that at date −1, agents will write contracts based on the K = 0 case of Proposition 2. If the
K > 0 event transpires, agents will rewrite the contracts accordingly. We may think of a flight to quality in
terms of this rewriting of contracts. Note that the only benefit in writing a contract at date −1 that is fully
contingent on K is to save the ε of rewriting costs. In particular, if ε = 0 it is not possible to improve the
allocation based on signing contingent date −1 contracts. Agents are identical at both date −1 and at date
0, so that there are no extra allocational gains from writing the contracts early.
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argues that during the 1998 crisis, the natural liquidity suppliers (hedge funds and trading

desks) became liquidity demanders. In our model, uncertainty causes the trading desks to

tie up more of the capital of the investment bank. The average market has less capital to

absorb shocks, suggesting reduced liquidity in all markets.

In this example, the Russian default leads to less liquidity in other unrelated asset markets.

Gabaix, Krishnamurthy, and Vigneron (2006) present evidence that the mortgage-backed

securities market, a market unrelated to the sovereign bond market, suffered lower liquidity

and wider spreads in the 1998 crisis. Note also that in this example there is no contagion

effect if Z is large as the agents’ trading desk will not be concerned about having the necessary

capital to cover shocks when Z > c∗. Thus, any realized losses by investment banks during

the Russian default strengthen the mechanism we highlight.

Our second example is a variant of the classical bank-run, but on the credit side of

a commercial bank. The agents of the model are corporates. The corporates deposit Z

in a commercial bank at date −1 and sign revolving credit lines that give them the right

to c1 if they receive a shock. The corporates are also aware that if banking conditions

deteriorate (a second wave of shocks) the bank will raise lending standards/loan rates so that

the corporates will effectively receive only c2 < c1. The flight to quality event is triggered by

the commercial bank suffering losses and corporates becoming concerned that the two-wave

event will transpire. They respond by preemptively drawing down credit lines, effectively

leading all firms to receive less than c1. Gatev and Strahan (2006) present evidence of this

sort of credit-line run during periods when the spread between commercial paper and Treasury

bills widens (as in the fall of 1998).

The last example is one of the interbank market for liquidity and the payment system.

The agents of the model are all commercial banks who have Z Treasury bills at the start

of the day. Each commercial bank knows that there is some possibility that it will suffer a

large outflow from its reserve account, which it can offset by selling Treasury bills. To fix

ideas, suppose that bank A is worried about this happening at 4pm. At date −1, the banks

enter into an interbank lending arrangement so that a bank that suffers such a shock first,

receives credit on advantageous terms (worth c1 of T-bills). If a second set of shocks hits,

banks receive credit at worse terms of c2 (say, the discount window). At date 0, 9/11 occurs.

Suppose that bank A is a bank outside New York City which is not directly affected by the

events, but which is concerned about a possible reserve outflow at 4pm. However, now bank

A becomes concerned that other commercial banks will need liquidity and that these needs

may arise before 4pm. Then, bank A will renegotiate its interbank lending arrangements and
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become unwilling to provide c1 to any banks that receive shocks first. Rather, it will hoard

its Treasury Bills of Z to cover its own possible shock at 4pm. In this example, uncertainty

causes banks to hoard resources, which is often the systemic concern in a payments gridlock

(e.g., Stewart, 2002, and McAndrews and Potter (2002)).

The different interpretations we have offered show that the model’s agents and their

actions can be mapped into the actors and actions during a flight to quality episode in

a modern financial system. As is apparent, our environment is a variant of the one that

Diamond and Dybvig (1983) study. In that model, the sequential service constraint creates

a coordination failure and the possibility of a bad crisis equilibrium in which depositors run

on the bank. In our model, the crisis is a rise in Knightian uncertainty rather than the

realization of the bad equilibrium. The association of crises with a rise in uncertainty is

the novel prediction of our model, and one which fits many of the flight to quality episodes

we have discussed in this paper. Other variants of the Diamond and Dybvig model such as

Rochet and Vives (2004) associate crises with low values of commercial bank assets. While

our model shares this feature (i.e. Z needs to below c∗), it provides a sharper prediction

through the uncertainty channel. Our model also offers interpretations of a crisis in terms

of the rewriting of financial contracts triggered by the uncertainty increase, rather than the

behavior of a bank’s depositors. Of course in practice both the coordination failures that

Diamond and Dyvbig highlight and the uncertainties we highlight are likely to be present,

and possibly interact, during financial crises.

II. Collective Bias and the Value of Intervention

In this section, we study the benefits of central bank actions in the flight to quality episode

of our model. We show that a central bank can intervene to improve aggregate outcomes.

The analysis also clarifies the source of the benefit in our model.

A. Central Bank Information and Objective

The central bank knows the aggregate probabilities φ(1), φ(2), and knows that the φω’s are

drawn from a common distribution for all ω. We have previously noted that this information is

common knowledge, so we are not endowing the central bank with any more information than

agents have. The central bank also understands that because of agents’ ex-ante symmetry, all

agents choose the same contingent consumption plan Cs. We denote ps,CB
ω as the probabilities
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that the central bank assigns to the different events that may affect agent ω. Like agents,

the central bank does not know the true probabilities ps
ω. Additionally, ps,CB

ω may differ from

ps,ω
ω .

The central bank is concerned with the equally weighted ex-post utility that agents derive

from their consumption plans:

V CB ≡
∫

ω∈Ω

∑
ps,CB

ω U(Cs)dω (14)

=
∑

psU(Cs).

The step in going from the first to second line is an important one in the analysis. In the first

line, the central bank objective reflects the probabilities for each agent ω. However, since the

central bank is concerned with the aggregate outcome, we integrate over agents, exchanging

the integral and summation, and arrive at a central bank objective that only reflects the

aggregate probabilities ps. Note that the individual probability uncertainties disappear when

aggregating, and that the aggregate probabilities that appear are common knowledge (i.e.,

they can be written solely in terms of φ(1) and φ(2)). Finally, as our earlier analysis has

shown that only c1, c2, c
1,no
T > 0 need to be considered, we can reduce the objective to:

V CB =
φ(1)

2
u(c1) +

φ(2)

2
u(c2) +

φ(1) − φ(2)

2
βc1,no

T .

The next two subsections explain how a central bank that maximizes the objective function

in (14) will intervene. For now, we note that one can view the objective in (14) as descriptive

of how central banks behave: Central banks are interested in the collective outcome, and

thus it is natural that the objective adopts the average consumption utility of agents in the

economy. We return to a fuller discussion of the objective function in Section D. where we

explain this criterion in terms of welfare and Pareto improving policies.

B. Collective Risk Management and Wasted Liquidity

Starting from the robust equilibrium of Proposition 2, consider a central bank that alters

agents’ decisions by increasing c1 by an infinitesimal amount, and decreasing c2 and c1,no
T by

the same amount. The value of the reallocation based on the central bank objective in (14)

is:
φ(1)

2
u′(c1) − φ(2)

2
u′(c2) − φ(1) − φ(2)

2
β. (15)
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First, note that if there is sufficient aggregate liquidity, c1 = c2 = c∗ = u′−1(β). For this

case,
φ(1)

2
u′(c1) − φ(2)

2
u′(c2) − φ(1) − φ(2)

2
β = 0

and equation (15) implies that there there is no gain to the central bank from a reallocation.

Turning next to the insufficient liquidity case, the first order condition for agents in the

robustness equilibrium satisfies,

φω
ω(1)u′(c1) − φω

ω(2)u′(c2) − β
φ(1) − φ(2)

2
= 0

or (
φ(1)

2
−K

)
u′(c1) −

(
φ(2)

2
+K

)
u′(c2) − β

φ(1) − φ(2)

2
= 0.

Rearranging this equation we have that,

φ(1)

2
u′(c1) − φ(2)

2
u′(c2) − β

φ(1)− φ(2)

2
= K(u′(c1) + u′(c2)).

Substituting this relation into (15), it follows that the value of the reallocation to the central

bank is K(u′(c1)+u′(c2)) which is positive for all K > 0. That is, the reallocation is valuable

to the central bank because from its perspective agents are wasting aggregate liquidity by

self-insuring excessively rather than cross-insuring risks.

Summarizing these results:

PROPOSITION 3 : For any K > 0, if the economy has insufficient aggregate liquidity

(Z < c∗), on average agents choose too much insurance against receiving shocks second relative

to receiving shocks first. A central bank that maximizes the expected (ex-post) utility of agents

in the economy can improve outcomes by reallocating agents’ insurance toward the first shock.

C. Is the Central Bank Less Knightian or More Informed than Agents?

In particular, are these the reasons the central bank can improve outcomes? The answer

is no. To see this, note that any randomly chosen agent in this economy would reach the

same conclusion as the central bank if charged with optimizing the expected ex-post utility

of the collective of agents.

Suppose that agent ω̃, who is Knightian and uncertain about the true values of θω, is

given such a mandate. Then this agent will solve,

max
c1,c2,c1,no

T

min
θω̃
ω∈Θ

∫ (
φω̃

ω(1)u(c1) + φω̃
ω(2)u(c2) +

φ(1) − φ(2)

2
βc1,no

T

)
dω.
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Since aggregate probabilities are common knowledge we have that:∫
φω̃

ω(1) dω =
φ(1)

2
,

∫
φω̃

ω(2) dω =
φ(2)

2
.

Substituting these expressions back into the objective, and dropping the min operator since

now no expression in the optimization depends on θω̃
ω, yields:

max
c1,c2,c

1,no
T

φ(1)

2
u(c1) +

φ(2)

2
u(c2) +

φ(1) − φ(2)

2
βc1,no

T ,

which is the same objective as that of the central bank.

If it is not an informational advantage or the absence of Knightian traits in the central

bank, what is behind the gain we document? The combination of two features drives our

results: The central bank is concerned with aggregates and individual agents are “uncer-

tain” (Knightian) not about aggregate shocks but about the impact of these shocks on their

individual outcomes.

Since individual agents make decisions about their own allocation of liquidity rather than

about the aggregate, they make choices that are collectively biased when looked at from the

aggregate perspective. Let us develop the collective bias concept in more detail.

In the fully robust equilibrium of Proposition 2 agents insure equally against first and

second shocks. To arrive at the equal insurance solution, robust agents evaluate their first

order conditions (equation 13) at conservative probabilities:

φω
ω(1) − φω

ω(2) =
φ(1) − φ(2)

2

(
u′(c∗)
u′(Z)

)
(16)

Suppose we compute the probability of one and two aggregate shocks using agents’ con-

servative probabilities:

φ̄(1) ≡2

∫
Ω

φω
ω(1)dω, φ̄(2) ≡ 2

∫
Ω

φω
ω(2)dω.

The two in front of these expressions reflects the fact that only one-half of agents are affected

by each of the shocks. Integrating equation (16) and using the definitions above, we find that

agents’ conservative probabilities are such that,

φ̄(1) − φ̄(2) = (φ(1) − φ(2))

(
u′(c∗)
u′(Z)

)
< φ(1) − φ(2).

The last inequality follows in the case of insufficient aggregate liquidity (Z < c∗).
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Implicitly, these conservative probabilities overweight an agent’s chances of being affected

second in the two-wave event. Since each agent is concerned about the scenario in which

he receives a shock last and there is little liquidity left, robustness considerations lead each

agent to bias upwards the probability of receiving a shock later than the average agent.

However, every agent cannot be later than the “average.” Across all agents, the conservative

probabilities violate the known probabilities of the first and second wave events.

Note that each agent’s conservative probabilities are individually plausible. Given the

range of uncertainty over θω, it is possible that agent ω has a higher than average probability

of being second. Only when viewed from the aggregate does it become apparent the scenario

that the collective of conservative agents are guarding against is impossible.

D. Welfare

We next discuss our specification of the central bank’s objective in (14). Agents in our

model choose the worst case among a class of priors when making decisions. That is, they

are not rational from the perspective of Bayesian decision theory and therefore do not satisfy

the Savage axioms for decision making. As Sims (2001) notes, this departure from rational

expectations can lead to a situation where a maximin agent accepts a series of bets that have

him lose money with probability one. The appropriate notion of welfare in models where

agents are not rational is subject to some debate in the literature.12 It is beyond the scope of

this paper to settle this debate. Our aim in this section is to clarify the issue in the present

context and offer some arguments in favor of objective (14).

At one extreme, consider a “libertarian” welfare criterion whereby agents’ choices are by

definition what maximizes their utility. That is, define,

V CB =

∫
ω∈Ω

min
θω
ω∈Θ

∑
ps,ω

ω U(Cs)dω.

This is an objective function based on each agent-ω’s ex-ante utility which is evaluated using

that agent’s worst-case probabilities. The difference relative to the objective in (14) is that

all utility here is “anticipatory.” That is, the agent enjoys happiness at date 0 from making

a decision that avoids a worst-case outcome. Note that such a specification differs from

standard expected utility whereby the agent only receives happiness at dates 1, 2 and T when

the agent actually consumes.

12The debate centers on whether or not the planner should use the same model to describe choices and
welfare (see, e.g., Gul and Pesendorfer (2005) and Bernheim and Rangel (2005) for two sides of the argument).
See also Sims (2001) in the context of a central bank’s objective.
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Under the objective V CB the agent’s choices are efficient and there is no role for the central

bank. We can see this immediately because the planning problem in deriving Proposition 2

was based on the latter objective function.

The objective function we use in (14) is based on ex-post consumption utility, and assumes

that agents do not receive any anticipatory utility. More generally, consider an objective

function λ V CB + (1−λ)V CB with λ ∈ [0, 1]. Then it is clear that as long as λ < 1 – i.e. the

welfare function places some weight on ex-post consumption utility – there is a role for the

central bank. In this sense, the no-intervention case is an extreme one.

There is a further reason to restrict attention to the λ = 0 case, as in (14). Consider the

following thought experiment: Suppose that we repeat infinitely many times the liquidity

episode we have described. At the beginning of each episode, agent ωdraws a θω ∈ Θ. These

draws are i.i.d. across episodes, and the agent knows that on average his θω will be zero.

In each episode, since agent ω does not know the θω for that episode, the agent’s worst-case

decision rule has him using θω = K. V CB is the average consumption utility of agent ω across

all of these episodes.13

The preceding two arguments are ones in favor of using an ex-post consumption utility

welfare criterion, where each agent is weighted equally. The last point we discuss is when

equal weighting is appropriate. Thus far, since agents are ex-ante identical, a policy that

improves the average agent’s ex-post consumption utility also improves each agent’s ex-post

expected consumption utility. Suppose however that a fraction of the agents in the economy

are Bayesian (i.e. rational) and moreover know that their true θω is equal to K. For these

agents, the worst-case probabilities are truly their own probabilities. Thus, define the welfare

of the rational agents as

V R =

∫
ω∈ΩR

∑
ps,ω

ω U(Cs)dω,

where ΩR is the subset of Ω corresponding to the rational agents, and the probabilities ps,ω
ω

are based on θω = K.

The rest of the agents, ω ∈ Ω \ ΩR, are Knightian with θω’s such that the average θω

across both classes of agents is zero. We define V K in a similar way to the objective in (14)

as the average ex-post consumption utility of the Knightian agents.

We now have a situation where there is ex-ante heterogeneity among agents so that equal

weighting is no longer appropriate. Suppose that the central bank cannot discriminate among

13Of course, in living through repeated liquidity events, an agent learns over time about the true distribution
of θω . However, it is still the case that along this learning path, K remains strictly positive (while shrinking)
and hence the qualitative features of our argument go through for a small enough discount rate.
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the two classes of agents. Is the intervention still Pareto improving?

The result in Proposition 3 still applies to the Knightian agents. The central bank will

compute a first order gain in V K from the reallocation intervention. Importantly, note that

the envelope theorem implies that changing the rational agents’ decisions results in only a

second order utility loss to the rational agents. That is, a small intervention means that the

loss in V R is small compared to the gain in V K . Thus, although the central bank’s policy

is not Pareto improving, it involves asymmetric gains to the Knightian agents. Camerer, et

al., (2003) propose this type of asymmetric paternalism criterion in evaluating policies when

some agents are behavioral.

E. Risk Aversion versus Uncertainty Aversion

We note previously that from a positive standpoint our model of uncertainty aversion

predicts a flight to quality when there is a “new” shock, whereas a model with extreme risk

aversion predicts conservative behavior in response to any negative shock, new or not. We

close this section by noting that the normative implications of uncertainty aversion also differ

from that of extreme risk aversion. Without collective bias, and regardless of the agent’s

degree of risk aversion, our central bank sees no reason to reallocate liquidity toward the first

wave of shocks beyond the private sector’s choices. We can see this because setting K = 0 in

our model represents a model without uncertainty aversion. As we have imposed only weak

requirements on u(·), the utility function can be chosen to represent extreme forms of risk

aversion. However the results of Proposition 3 establish that there is a gain for the central

bank only if K > 0 and Z < c∗.

We conclude that there is a role for the central bank only in situations of Knightian

uncertainty and insufficient aggregate liquidity. Of course not all recessionary episodes exhibit

these ingredients. But there are many scenarios where they are present, such as October 1987

and the Fall of 1998.

III. An Application: Lender of Last Resort

The abstract reallocation experiment considered in Proposition 3 makes clear that during

flight to quality episodes the central bank will find it desirable to induce agents to insure less

against second shocks and more against first shocks. In this section we discuss an application

of this result and consider a lender of last resort (LLR) policy in light of the gain identified
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in Proposition 3.

As in Woodford (1990) and Holmstrom and Tirole (1998), we assume the LLR has access

to collateral that private agents do not (or at least, it has access at a lower cost). Woodford

and Holmstrom and Tirole focus on the direct value of intervening using this collateral. Our

novel result is that, because of the reallocation benefit of Proposition 3, the value of the LLR

exceeds the direct value of the intervention. Thus our model sheds light on a new benefit of

the LLR.

The model also stipulates when the benefit is highest. As we have remarked previously,

the reallocation benefit only arises in situations where K > 0 and Z < c∗. This carries over

directly to our analysis of the LLR: the benefits are highest when K > 0 and Z < c∗. We

also show that the LLR must be a last-resort policy. In fact, if liquidity injections take place

too often, the reallocation effect works against the policy and reduces its value.

A. LLR Policy

Formally, the central bank credibly expands the resources of agents in the two-shock event

by an amount ZG. That is, agents who are affected second in the two-wave event (s = (2, 2)),

will have their consumption increased from c2 to c2+2ZG (twice ZG because one-half measure

of agents are affected by the second shock). The resource constraints for agents (for the

reduced problem) are:

c1 + c1,no
T ≤ 2Z (17)

c1 + c2 ≤ 2Z + 2ZG. (18)

In practice, the central bank’s promise may be supported by a credible commitment to costly

ex-post inflation or taxation and carried out by guaranteeing, against default, the liabilities

of financial intermediaries who have sold financial claims against extreme events. Since we

are interested in computing the marginal benefit of intervention, we study an infinitesimal

intervention of ZG.

If the central bank offers more insurance against the two-shock event, this insurance has

a direct benefit in terms of reducing the disutility of an adverse outcome. The direct benefit

of the LLR is,

V CB,direct
ZG = 2

∫
Ω

φω(2)u′(c2,ω) dω = φ(2)u′(c2).

The anticipation of the central bank’s second-shock insurance leads agents to reoptimize

their insurance decisions. Agents reduce their private insurance against the publicly insured
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second-shock and increase their first-shock insurance. The total benefit of the intervention

includes both the direct benefit as well as any benefit from portfolio reoptimization:

V CB,total
ZG =

∫
Ω

[
φω(1)u′(c1,ω)

dc1,ω

dZG
+ φω(2)u′(c2,ω)

dc2,ω

dZG
+
φ(1) − φ(2)

2
β
dc1,no

T,ω

dZG

]
dω.

The first order condition for agent decisions, from (13), in the robust equilibrium gives,

φ(1)

2
u′(c1) =

φ(2)

2
u′(c2) + β

φ(1) − φ(2)

2
+K(u′(c1) + u′(c2)).

We simplify the expression for V CB,total
ZG by integrating through φω(1) and φω(2) and then

substituting for u′(c1) from the first order condition. These operations yield,

V CB,total
ZG =

φ(2)

2
u′(c2)

(
dc1
dZG

+
dc2
dZG

)
+β

φ(1)− φ(2)

2

(
dc1
dZG

+
dc1,no

T

dZG

)
+K(u′(c1)+u′(c2))

dc1
dZG

Last, we differentiate the resource constraints (17) and (18) with respect to ZG to find,

dc1
dZG

+
dc2
dZG

= 2,
dc1
dZG

+
dc1,no

T

dZG
= 0.

Then,

V CB,total
ZG = φ(2)u′(c2) +K(u′(c1) + u′(c2))

dc1
dZG

= V CB,direct
ZG +K(u′(c1) + u′(c2))

dc1
dZG

.

The additional benefit we identify is due to portfolio reoptimization: Agents cut back on

the publicly insured second shock and increase first shock insurance, thereby moving their

decisions closer to what the central bank would choose for them. In this sense, the LLR

policy can help to implement the policy suggested in Proposition 3.

We also note that without Knightian uncertainty (K = 0), there is no gain (beyond the

direct benefit) from the policy. Moreover, it is straightforward to see that if Z > c∗ then

agents will not use the additional insurance to cover their liquidity shocks, but will reoptimize

in a way as to use the insurance at date T . In this case there is no gain to offering the public

insurance (since dc1
dZG = 0 ). We summarize these results as follows:

PROPOSITION 4 : For K > 0 and Z < c∗, the total value of the lender of last resort policy

exceeds its direct value:

V CB,total
ZG > V CB,direct

ZG .
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It is important to note that under the LLR policy the central bank injects resources

only rarely. As we associate the second-shock event with an extreme and unlikely event,

in expectation the central bank does not promise many resources. This aspect of policy is

similar to Diamond and Dybvig’s (1983) analysis of a LLR. However there are a few important

differences in the mechanism through which the policies work. As there is no coordination

failure in our model, the policy does not work by ruling out a “bad” equilibrium. Rather,

the policy works by reducing the agents’ “anxiety” that they will receive a shock last when

the economy has depleted its liquidity resources. It is this anxiety that leads agents to use

a high φω
ω(2) in their decision rules. From this standpoint, it is also clear that an important

ingredient in the policy is that agents have to believe that the central bank will have the

necessary resources in the two-event shock in order to reduce their anxiety. Credibility and

commitment are central to the working of our LLR policy.14

B. Moral Hazard and Early Interventions

The policy we have suggested cuts against the usual moral hazard critique of central bank

interventions. The moral hazard critique is predicated on agents responding to the provision

of public insurance by cutting back on their own insurance activities. In our model, in keeping

with the moral hazard critique, agents reallocate insurance away from the publicly insured

shock. However, when flight to quality is the concern, the reallocation improves (ex-post)

outcomes on average.15 Public and private provision of insurance are complements in our

model.

This logic suggests that interventions against first shocks may be subject to the moral

hazard critique as agents’ portfolio reoptimization would lead them toward more insurance

against the second shock. To consider the “early intervention” case, suppose that the central

bank credibly offers to increase the consumption of agents who are affected in the first shock

from c1 to c1 + 2ZG. The resource constraints for agents (for the reduced problem) are:

c1 + c1,no
T ≤ 2Z + 2ZG

c1 + c2 ≤ 2Z + 2ZG.

14In this sense, the policy relates to the government bond policy of Woodford (1990) and Holmstrom and
Tirole (1998) who argue that government promises are unique because they have greater collateral backing
than private sector promises.

15Note that if the direct effect of intervention is insufficient to justify intervention, then the lender of last
resort policy is time inconsistent. This result is not surprising as the benefit of the policy comes precisely
from the private sector reaction, not from the policy itself.
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The direct benefit of intervention in the first shock is:

V CB,direct,f irst
ZG = 2

∫
Ω

φω(1)u′(c1,ω)dω = φ(1)u′(c2).

We compute the total benefit as previously except that we substitute agents’ first order

condition using,

φ(2)

2
u′(c2) =

φ(1)

2
u′(c1) − β

φ(1) − φ(2)

2
−K(u′(c1) + u′(c2)).

Also, using the fact that,

dc1
dZG

+
dc2
dZG

= 2,
dc1
dZG

+
dc1,no

T

dZG
= 2.

we find that,

V CB,total
ZG = V CB,direct,f irst

ZG −K(u′(c1) + u′(c2))
dc1
dZG

< V CB,direct,f irst
ZG

The expected cost of the early intervention policy is much larger than the second shock

intervention, since the central bank rather than the private sector bears the cost of insurance

against the (likely) single-shock event. Agents reallocate the expected resources from the

central bank to the two-shock event, which is exactly the opposite of what the central bank

wants to achieve. In this sense, interventions in intermediate events are subject to the moral

hazard critique. We conclude that the lender of last resort facility, to be effective and improve

private financial markets, has to be a last and not an intermediate resort.

C. Multiple Shocks

It is clear that the LLR should not intervene during early shocks and instead should only

pledge resources for late shocks; but if we move away from our two-shock model to a more

realistic context with multiple potential waves of aggregate shocks, how late is late?

To answer this question we extend the model to consider multiple shocks. We assume

the economy may experience n = 1...N waves of shocks, each affecting 1
N

of the agents. The

probability of the economy experiencing n waves is denoted φ(n), with φ(n) < φ(n−1). Also,

each ω’s probability of being affected in the nth wave satisfies
∫

ω∈Ω
φω(n)dω = φ(n)

N
.

The LLR policy takes the following form: The central bank injects 1
N−j+1

units of liquidity

for all shocks after (and including) the jth wave (j ≤ N). We also simplify our analysis by

focusing on the fully robust case where cn is the same for all n and by setting β = 0, thereby
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assuring that Z < c∗ and allowing us to disregard effects on cn,no
T . cn rises to cn + N

N−j+1
in

the intervention (i.e. 1
N−j+1

injected to a measure 1
N

of agents).

The direct value of the intervention as a function of j is,

V CB,direct
ZG =

N

N − j + 1

∫
Ω

N∑
n=j

φω(n)u′(cn,ω)dω

= u′(c1)
1

N − j + 1

N∑
n=j

φ(n).

Agents reduce insurance against the publicly insured shocks and increase their private

insurance for the rest of the shocks. The total benefit of the intervention includes both the

direct benefit as well as any benefit from portfolio reoptimization:

V CB,total
ZG =

∫
Ω

N∑
n=1

φω(n)u′(cn,ω)
dcn,ω

dZG
dω.

From the resource constraint we have that

N∑
n=1

dcn,ω

dZG
= N

In the fully robust case, cn,ω and dcn,ω

dZG are the same for all n. Then,

V CB,total
ZG = u′(c1)

dc1
dZG

1

N

N∑
n=1

φ(n) = u′(c1)
1

N

N∑
n=1

φ(n) (19)

Note that this expression is independent of the intervention rule j. In contrast, it is apparent

that V CB,direct
ZG is decreasing with respect to j since the φ(n)’s are monotonically decreasing.

Thus, the ratio:
V CB,total

ZG

V CB,direct
ZG

=
1
N

∑N
n=1 φ(n)

1
N−j+1

∑N
n=j φ(n)

is strictly greater than one for all j > 1 and is increasing with respect to j.

Of course, the above result does not suggest that intervention should occur only in the

Nth shock. Instead, it suggests that for any given amount of resources available for interven-

tion, the LLR should first pledge resources to the Nth shock and continue to do so until it

completely replaces private insurance, it should then move on to the N − 1st shock, and so

on.

The multiple shock model also clarifies another benefit of late intervention. As j rises,

events that are being insured by the LLR become increasingly less likely. If we take the case
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where the shadow cost of the LLR resources for the central bank is constant, the expected

cost of the LLR policy falls as j rises, while the expected benefit remains constant.

In other words, as j rises, it is the private sector that increasingly improves the allocation

of scarce private resources to early and more likely aggregate shocks, thereby reducing the

extent of the flight-to-quality phenomenon. In contrast, the central bank plays a decreasingly

small role in terms of the expected value of resources actually disbursed, as j increases.

Thus, while a well designed LLR policy may indeed have a direct effect only in highly

unlikely events, the policy is not irrelevant for likely outcomes. Its main benefits come from

unlocking private markets to insure more likely and less extreme events.

IV. Final remarks

We present a model of financial crises and the role of a lender of last resort that centers on

Knightian uncertainty and liquidity shortages. While Knightian uncertainty is discussed in

policy circles (e.g., see Greenspan’s quote in the Introduction), it is not standard in academic

analyses of crises, which instead emphasizes liquidation externalities (e.g., Diamond and

Dybvig (1983)). Thus, rather than ending with a summary of findings, it is useful to take

stock by considering points of similarity and departure between our Knightian uncertainty

model and the standard liquidation externality model.

As we argue throughout the paper, an “uncertainty shock,” distinct from —although pos-

sibly correlated with— a liquidation shock is an important element in many financial crises.

The uncertainty shock, like the liquidation shock, reproduces the behavior of agents during a

flight to quality episode. Agents move toward holding uncontingent and safe assets, financial

intermediaries hoard liquidity, and investment banks and trading desks turn conservative in

their allocation of risk capital so that capital becomes immobile across markets. On these

points our model emphasizes a different mechanism but shares many of the predictions of

liquidation models.

Despite this similarity, we think it is valuable to spell out the model of the uncertainty

shock. At a minimum, doing so clarifies and expands the set of preconditions for crises.

There may be crisis events where liquidation externalities are absent but in which there is a

substantial amount of Knightian uncertainty. At the other extreme, the most severe crises

in the US and abroad seem to have elements of both an uncertainty and a liquidation shock.

In such cases our model helps to understand why these crises may have been so severe.

Furthermore, there are some events – e.g. the recent liquidation of the Amaranth hedge
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fund’s sizeable portfolio – for which the preconditions seem to fit the liquidation crisis model,

but yet did not trigger crises. Our model suggests that the absence of significant uncertainty

around these events may be one reason why (in the particular case of Amaranth, financial

specialists had already learned from the LTCM experience). Thus our model also helps

to shed light on the “dog that did not bark.” More broadly, it suggests that an important

precondition for crises is the presence of “new” shocks, perhaps surrounding new and untested

financial innovations. This prediction is also useful to guide policymakers on where crises may

arise.

From a policymaker’s perspective, our model, like the liquidation externality model, shows

that there are benefits to a lender of last resort facility during a crisis. However, in our

model the central issue to determine the value of a LLR facility is not only the potential for

coordination failure but also the extent of uncertainty in the marketplace. For example, we

prescribe that a default by a hedge fund – even one that is large – should not elicit central

bank reaction unless the default triggers considerable uncertainty in other market participants

and hedge funds are financially weak.

Yet another subtle difference between the two models is in the incentive effects of policy

intervention. In the liquidation model, moral hazard is often an important issue that tempers

policy intervention. This is because private and public insurance are substitutes in this model.

In contrast, our analysis reveals that in the uncertainty model there are dimensions in which

private and public insurance are complements rather than substitutes, suggesting that the

moral hazard issue is less important for uncertainty driven crises. Having said this, a different

kind of moral hazard problem may arise in the uncertainty model if agents can invest resources

to affect the degree of uncertainty they face.

In the liquidation model, ex-ante policy recommendations typically center on prudential

risk management. For example, in many analyses there are externalities present that drive

a wedge between private and social incentives to insure against a financial crisis episode.

Then, ex-ante regulations to reduce leverage, increase liquidity ratios, or tighten capital

requirements are beneficial. In our model, an important dimension of the crisis is that there

is uncertainty about outcomes. Agents cannot refer to history to understand how a crisis

will unfold because the historical record may not span the event space. In such a case it is

unclear whether any entity, either private or public, can arrive at the appropriate ex-ante risk

management strategy, calling into question the feasibility of these policy recommendations.

Instead, in our uncertainty model, the most beneficial ex-ante actions are ones which help to

reduce the extent of uncertainty should a crisis occur. In some cases, this may simply involve
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making common knowledge information that is known to subsets of market participants – for

example, making common knowledge the portfolio positions of the major players in a market.

In other cases, this may involve the central bank facilitating discussions among the private

sector on how each party will react in a crisis scenario.

These points are pertinent, and can be illustrated, in the credit derivatives market. There

is currently considerable uncertainty over how the downgrade of a top name will affect the

credit derivatives market (see Geithner (2006)). Market participants are aware that such a

downgrade will occur at some point, but given the lack of history, they are uncertain of how

events will unfold. Will the market absorb such a shock without losing liquidity? Could such

a shock result in a credit crunch that causes the corporate sector to suffer, and trigger a

domino effect of downgrades? Are back-office and settlement procedures sufficient to handle

such an event? Our model suggests that the central bank stands ready to act as the LLR in

the event that a downgrade triggers these uncertainties. There have also been recent moves

to increase transparency and risk assessment in this market, as well as streamline back-office

settlement procedures. Our model suggests that such ex-ante actions may reduce uncertainty

and be beneficial.

Finally, as we note, Knightian uncertainty may often be associated with financial inno-

vations. This suggests that crises surrounding financial innovations may by fertile ground to

look empirically for the effects we have modeled, and disentangle them from other more well

understood effects. It also suggests a new perspective on the costs and benefits of innova-

tion. For example, our model suggests that in a dynamic context with endogenous financial

innovation, it is the pace of this innovation that inherently creates uncertainty and hence

the potential for a flight to quality episode. Financial innovation facilitates risk sharing and

leverage, but also introduces sources of uncertainty about the resilience of the new system to

large shocks. This uncertainty is only resolved once the system has been tested by a crisis

or near-crisis, after which the economy may enjoy the full benefits of the innovation. We are

currently exploring these issues.

Appendix

Event Tree and Probabilities: The event tree is pictured below. The probability of two

waves affecting the economy is φ(2); the probability of one wave affecting the economy is

φ(1) − φ(2); and, the probability of no waves affecting the economy is 1 − φ(1). We used

the dashed box around “1st wave” to signify that agents are unsure whether they are in the

upper branch (one more wave will occur) or the middle branch (no further shocks).
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Consider an agent ω who may be affected in these waves. Suppose that his probability

of being affected by a shock when the event is the middle branch (“1 wave”) is one-half.

Suppose that his probability of being affected by a first shock when the event is the upper

branch (“2 waves”) is ψω, while his probability of being affected by a second shock is 1−ψω.

Moreover, suppose that the agent is uncertain about ψω, which we interpret as the agent is

uncertain about his likelihood of being first or second, in the case of a two wave event.

The agent’s probability of being affected by a first shock is,

φω(1) = φ(2)ψω + (φ(1) − φ(2))
1

2
.

The agent’s probability of being affected by a second shock is,

φω(2) = φ(2)(1 − ψω).

Note that,

φω(1) + φω(2) = φ(2) + (φ(1) − φ(2))
1

2
=
φ(1) + φ(2)

2
,

and,

φω(1) − φ(1)

2
= φ(2)ψω − φ(2)

2

φω(2) − φ(2)

2
= −φ(2)ψω +

φ(2)

2

These expressions show that the event tree is consistent with agents being certain about their

probability of receiving a shock, but being uncertain about their relative probabilities of being

first or second. In the text, we describe the uncertainty in terms of φω(2) − φ(2)
2

rather than

in terms of ψω.
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Proof of Proposition 2: We focus on the case of insufficient aggregate liquidity (Z < c∗).

The other case follows the same logic as the K = 0 case. We are looking for a solution to

the problem in equation (12). We can describe this problem in the game-theoretic language

often used in max-min problems. The agent chooses C to maximize V (C; θω
ω) anticipating

that “nature” will choose θω
ω to minimize V (C; θω

ω) given the agent’s choice of C.

The solution (θ̄ω
ω, C̄) has to satisfy a pair of optimization problems. First, θ̄ω

ω ∈ argminθω
ω
V (C̄; θω

ω).

That is, nature chooses θω
ω optimally given the agent’s choice of C̄. Second, C̄ ∈ argmaxCV (C; θ̄ω

ω).

That is, the agent chooses C optimally given nature’s choice of θ̄ω
ω.16

We compute:
∂V

∂θω
ω

= u(c2) − u(c1) + β(c2,2
T − c2,1

T )

Let us first ask whether there exists a solution in which ∂V
∂θω

ω
< 0. If so, then clearly θω

ω = +K.

Taking this value of θω
ω let us consider the agent’s problem in equation (12). First note that

c2,1
T = 0. To see this, suppose that c2,1

T > 0. Then we can reduce c2,1
T by δ and increase c2,2

T by

δ and produce a utility gain of δ(φω
ω(2) − φ(2) + φω

ω(2)) > 0 when θω
ω > 0.

With this knowledge, we rewrite the condition that ∂V
∂θω

ω
< 0 as,

u(c2) + βc2,2
T < u(c1) ⇒ c1 > c2

If c1 > c2 and Z < c∗ it follows from the resource constraint that c2 < c∗. But if c2 < c∗ then

from the agent’s problem, we must have that c2,2
T = 0 (i.e. do not save any resources for date

T if these resources could be used earlier).

Thus, we only need to consider the agent’s problem in (12) for values of c1, c2, c
1,no
T > 0.

The first order condition for the agent at θω
ω = +K is,(

φ(1)

2
−K

)
u′(c1) =

(
φ(2)

2
+K

)
u′(c2) + β

φ(1) − φ(2)

2
.

We note that for K = 0, the unique solution to the agent’s problem is c1 > c2. Thus, for

small values of K, a solution exists in which the agent chooses c1 > c2 and nature chooses

θω
ω = +K. This is the partially robust solution given in the Proposition.

As K becomes larger, c1/c2 falls and at some point c1 = c2 = Z. This occurs when K̄

solves, (
φ(1)

2
− K̄

)
u′(Z) =

(
φ(2)

2
+ K̄

)
u′(Z) + β

φ(1) − φ(2)

2
.

16The fact that the agent chooses C before nature chooses θω
ω does not affect our problem. To see this, note

that choosing first only gives the agent an advantage if the agent can induce nature to choose a θω
ω different

than θ̄ω
ω . Suppose the agent chooses C 	= C̄ to increase V (·). Clearly this choice reduces V below V (θ̄ω

ω , C̄).
Thus, nature can always choose to set θω

ω = θ̄ω
ω and make the agent strictly worse off than at the choice C = C̄.
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which gives the expression for the value of K̄ defined in the Proposition.

Note that if K > K̄, the solution θω
ω = +K̄ and c1 = c2 still solves both the agent’s and

nature’s optimization problems. The agent’s choice is uniquely optimal at θω
ω = +K̄, while

nature is indifferent over values of θω
ω ∈ [−K,+K]. This is the fully robust solution given in

the Proposition.

We have thus far shown that considering the case where ∂V
∂θω

ω
≤ 0, the solution given in the

Proposition is the only solution to the problem in (12). We conclude by showing that there

are no other solutions to the problem. To do this, we only need to consider whether there

exists a solution in which ∂V
∂θω

ω
> 0.

Suppose there does exist such a solution. If ∂V
∂θω

ω
> 0, then θω

ω = −K. We can go back

through arguments similar to those previously offered to show that c2,2
T and c2,1

T must both

be zero in this case. Then the condition that ∂V
∂θω

ω
> 0 is equivalent to,

c1 < c2

The first order condition for the agent is,(
φ(1)

2
+K

)
u′(c1) =

(
φ(2)

2
−K

)
u′(c2) + β

φ(1) − φ(2)

2
.

The solution to this problem is that c1 > c2, which is a contradiction. Thus there does not

exist a solution in which ∂V
∂θω

ω
> 0.

The Expanded Planning Problem: The planning problem consided in Proposition 2

solved for allocations contingent on the number of shocks affecting the economy and the time

at which a given agent is affected. In particular we did not allow allocations to be directly

contingent on agent’s beliefs about their shock probabilities. This Appendix considers an

expanded planning problem which considers such allocations and shows that the solution is

the same as that of Proposition 2. That is, allowing for more contingencies does not alter

our results.

Why consider allocations contingent on beliefs? In our equilibrium, agents have distorted

beliefs and in particular disagree: Agent ω thinks his θω = K, but he also knows that∫
ω∈Ω

θωdω = 0. That is, a given agent thinks that all other agents on average have a θω = 0,

but the agent himself has the worst case θ. This raises the question of whether it is possible to

construct a mechanism that exploits this disagreement in a way that agents end up agreeing.

Let us consider this issue formally as a mechanism design problem. Denote the “type” of

an agent as θω
ω and denote the report of the agent’s type as θ̂ω

ω. Also denote the set of reports
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from all agents as Γ̂ ∈ ⋃
ω∈Ω[−K,+K]. A consumption allocation to agent ω as a function of

the reports is C(ω, Γ̂).

The utility of ω from this consumption allocation given his type θω
ω is:

U(C(ω, Γ̂); θω
ω) = φω

ω(1)u(c1(ω, Γ̂)) + φω
ω(2)u(c2(ω, Γ̂)) +

φ(1) − φ(2)

2
βc1,no

T (ω, Γ̂).

The probabilities φω
ω(1) and φω

ω(2) are a function of θω
ω. Also, we have written this problem for

the simplified case where we only need to consider c1, c2, c
1,no
T > 0 (i.e., the reduced problem

in Proposition 2).

The planner’s problem is to choose an allocation function C:

max
C(ω,Γ̂)

∫
ω∈Ω

U(C(ω, Γ̂); θω
ω)) dω, (A1)

s.t. resource constraints: ∫
ω∈Ω

(
c1(ω, Γ̂)) + c2(ω, Γ̂)

)
dω ≤ 2Z,

and, ∫
ω∈Ω

(
c1(ω, Γ̂)) + c1,no

T (ω, Γ̂)
)
dω ≤ 2Z.

Finally the “type” of the agent is also a function of the allocation:

θω
ω ∈ argminθω

ω∈ΘU(C(ω, Γ̂); θω
ω). (A2)

The problem as we have written it is quite general. It describes each agent’s consumption

allocation as a function of the entire set of reports of agent’s types; where types are interpreted

to be the agent’s beliefs over his shock probabilities.

We argue that the current planning problem as described in Section II.D subsumes the

one in (A1). The strategy for the proof is to consider a relaxed version of the problem in

(A1) and show that the solution to that problem is the same as the solution to the planning

problem described in the text. Given this result, we conclude that allowing for a more general

allocation does not affect the results.

Suppose that the planner knows the agent types θω
ω without having to rely on reports.

Giving the planner more information allows the planner to implement strictly better alloca-

tions. As a result, this is a relaxed version of the problem we have written down in (A1).

Thus, suppose that C(ω,Γ), where Γ ∈ ⋃
ω∈Ω[−K,+K] is the set of agent types and C is the

allocation to agent ω as a function of the agent types directly and not the reports of agents.
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Note that θω
ω , as given in (A2), is a function of the consumption allocations of the planner

to agent ω – i.e., given consumption allocations to agent ω, the planner can directly compute

θω
ω. This implies that we can drop the dependence in C on Γ, and the planner’s choice is over

C(ω): the planner chooses numbers c1(ω), c2(ω), and c1,no
T (ω) for each ω. This problem is the

one we have solved in the text of the paper. The result is given in Proposition 2. Thus we

conclude that allowing for allocations that depend on the “types” of the agents does not alter

the equilibrium.
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