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Abstract

We analyze the tradeoff involved in the introduction of government guarantees in a context where
both panic and fundamental crises are possible, and banks’ and depositors’ withdrawal decisions are
endogenously determined. On the one hand, government intervention reduces depositors’ incentive to
run. On the other hand, it induces banks to engage in excessive risk taking. We show that generally
a more moderate form of intervention is more effi cient than blanket guarantees, even if panic runs still
occur. By limiting the size of the intervention, the government increases banks’ incentives to behave
prudently and thus, contains the likelihood of runs and the costs of intervention. Overall, the optimal
level of guarantees depends on the amount of public resources available to finance the scheme.
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1 Introduction

Government guarantees to financial institutions are common all over the world. They come in different

forms, such as deposit insurance provided to depositors who put their money in commercial banks, or

implicit guarantees for a bailout provided ex post upon the bank’s failure. The recent financial crisis led

to renewed interest and debate about the role of government guarantees and their desirability. On the one

hand, government guarantees are thought to have a positive role in preventing panic among investors, and

hence they help stabilize the financial system. They also help mitigating the negative consequences once

a panic had happened. On the other hand, they might create adverse incentives for banks to engage in

excessive risk taking. This might even lead to an overall increase in financial fragility.

In this paper, we present a model to analyze the tradeoff involved in the choice of the level of government

guarantees. We study an economy as in Diamond and Dybvig (1983) where banks offer deposit contracts to

investors, who might face early liquidity needs, and by that provide risk sharing among them. While banks

may improve investors’welfare due to the risk sharing they provide, the deposit contracts also expose banks

to the risk of a bank run, where many depositors panic and withdraw early out of the self-fulfilling belief

that other depositors will do so and the bank will fail. The role of deposit insurance is then to mitigate the

panic, by ensuring that depositors will be paid the promised amount in the event of a run, and so avoid the

run equilibrium.

In Diamond and Dybvig (1983), deposit insurance is always fully desirable, because it completely prevents

the bank-run equilibrium, and so the government never needs to pay anything, and because no moral-hazard

problem is generated by the deposit insurance. As real-world events highlighted, however, the situation is

often more complex. First, despite the presence of government guarantees, runs are not completely prevented

and governments find themselves in cases where they need to pay actual cost to get banks and their investors

out of trouble. Second, the presence of government guarantees is often blamed for the excessive risks that

banks engage in. Hence, by providing guarantees, the government might even be making the fragility more

severe, setting itself to pay excessive amounts to banks and their investors.

Analyzing the desirability of deposit insurance, in light of these considerations, requires a model where

the probability of a crisis is determined endogenously and affected by the presence of the deposit insurance.

Moreover, the deposit contract offered by the bank, and so the risk that the bank is exposed to, are also

determined endogenously and affected by the deposit insurance. Then, one can analyze the overall tradeoff

involved in setting the level of guarantees by the government.

To conduct this analysis, we build on the model developed in Goldstein and Pauzner (2005), in which

depositors’withdrawal decisions are uniquely determined using the global-game methodology, and so the
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probability of a run and how it is affected by the banking contract and by government policy can be

determined. Goldstein and Pauzner (2005) study the interaction between the demand deposit contract and

the probability of a run. We add a government to this model to study how the government’s guarantee

policy interacts with the banking contract and the probability of a run.

In the model, there are two periods. Banks raise funds from risk-averse consumers in the form of deposits

and invest them in risky projects whose return depends on the fundamental of the economy. Depositors

derive utility from consuming both a private and a public good. At the interim date, each depositor receives

an imperfect signal regarding the fundamentals and decides when to withdraw based on the information

received. In deciding whether to run or not, depositors compare the payoff they would get from going to the

bank prematurely and waiting until maturity. These payoffs depend on the fundamentals and the proportion

of depositors running.

In this setting, the equilibrium outcome is that runs occur when the fundamentals are below a unique

threshold. But, within the range where they occur, they can be classified into panic-based runs or fundamental-

based runs. The former type of run is one that is generated by the self-fulfilling belief of depositors that

other depositors will run. The latter type of run happens at the lower part of the run region, where the

fundamentals are low enough to make running a dominant strategy for depositors. Overall, the probability

of the occurrence of a run (and of both types of run) is uniquely determined and depends on the amount of

risk chosen by the bank as represented by the deposit contract offered to depositors.

We first show that the decentralized solution, i.e., without government intervention, is ineffi cient due

to the coordination problem among depositors, leading to panic runs. Moreover, to contain the occurrence

of panic runs, banks offer a repayment to depositors that is too low relative to the one that would provide

optimal risk sharing. Then, we consider the case in which the government attempts to reduce the probability

of runs by guaranteeing (at least part of) the promised repayments through the transfer of resources from

the public good to the banking sector. The guarantee scheme used by the government ensures that beyond

a certain number of people running on the bank, the government will provide resources that will enable the

bank to avoid liquidation, thus eliminating the negative externality a run imposes and so reducing the case

for panic to emerge.

Our framework captures the tradeoff generated by the introduction of government guarantees. On the

one hand, it reduces depositors’ incentives to run and thus the probability of crises. On the other hand,

as banks do not fully internalize the costs of the intervention, they are induced to take more risk in the

form of a higher repayment to depositors withdrawing prematurely. This in turn increases the government’s

disbursement and, in case runs are not eliminated, also depositors’incentives to withdraw early. In other

words, while the government guarantees reduce (or even eliminate) the probability of panic-based bank runs,
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they increase the probability of fundamental-based bank runs by creating incentives for banks to engage in

excessive risk taking and offering high payments to depositors. Interestingly, the introduction of government

guarantees may even lead to an overall increase in the probability of a run. Hence, in most cases, a more

moderate form of intervention is more effi cient than blanket guarantees as the limitation in the coverage and

scope of the guarantee increases the incentives of banks to behave prudently, thus reducing the probability of

runs and the disbursement for the government. We show that the optimal level of guarantees will generally

depend on the amount of the government’s resources.

We consider ways by which the government can improve its guarantee scheme. One such way is for the

government to control the amount of risk taken by the bank, e.g., by limiting the amount it promises to pay

to depositors. We show that this scheme can achieve better outcomes, and leads the government to set a high

level of insurance eliminating all panic-based runs. However, in practice, the government is likely limited in

how much it can control banks’policies. One concern is that setting the deposit rate will limit competition

among banks. Another concern is that some forms of risk taking by banks (not modelled here) are not

observable to the government. Finally, we consider guarantees schemes where the government prevents both

fundamental-based and panic-based runs by ensuring payments even in the long term. Such a policy has

the advantage of preventing runs completely and thus limiting the cases in which the government ends up

having to pay. However, moral hazard is also very strong here, which might mean that the government will

have to bear huge losses in case the bank ends up being insolvent.

Our analysis echoes well the empirical findings and policy observations regarding the downside of deposit

insurance. For example, the drawback of deposit insurance that we highlight is consistent with the critique

made by Calomiris (1990) that “today’s financial intermediaries can maintain higher leverage and attract

depositors more easily by offering higher rates of return with virtually no risk of default”. Our results are also

consistent with the empirical evidence in Demirguc-Kunt and Detragiache (2002), according to which explicit

deposit insurance is associated with higher likelihood of crisis. It is also consistent with the conclusion of

White (1998) that “. . . deposit insurance did not substantially reduce aggregate looses from bank failures and

may have raised them”. Additional empirical evidence is provided by Demirgüç-Kunt and Huizinga (2004)

and Ioannidou and Penas (2010). For a survey, see Allen, Carletti, and Leonello (2011).

The analysis in our paper provides a step towards understanding the implications and determination of

government guarantees. Due to the complexity of the model, we cannot provide full characterization and we

have to focus on particular schemes, but our analysis sheds light on the basic tradeoffs and decisions. The

novelty of the paper is to analyze the effects of the introduction of guarantees in the banking sector in a

context in which both fundamental and panic crises are possible and both banks’and depositors’decisions are

endogenously determined. The paper is linked to other papers that analyze the distortions entailed by deposit
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insurance and other forms of guarantees. Boot and Greenbaum (1993) and Cooper and Ross (2002) highlight

that public guarantees eliminate runs but at the cost of reducing the incentive of depositors to monitor banks,

thus increasing the occurrence of crises and the disbursement for the government. More closely related is

Keister (2010), who analyzes the desirability of bailouts in a setting with limited commitment in which banks

anticipate that self-fulfilling runs can occur with a certain exogenous probability. The main difference in our

paper is that we are able to endogenize the probability with which both fundamental and panic runs can

occur, which allows a fuller analysis of the consequences of deposit insurance policy.

The ability to endogenize the probability of a run in our model is achieved by relying on the global-games

literature that goes back to Carlsson and van Damme (1993). For an early review, see Morris and Shin (2003).

Our paper builds more directly on Goldstein and Pauzner (2005), by deriving a bank-run model where the

banking contract is determined endogenously, and the property of global strategic complementarities fails to

exist (unlike in most other global-games models). For discussion on the relation of this literature to empirical

evidence and the presence of panic vs. fundamental crises in the data, see Goldstein (2012).

The paper proceeds as follows. Section 2 describes the model without government intervention. Section

3 derives the decentralized equilibrium. Section 4 analyzes a guarantee scheme limiting the occurrence of

panic runs. Section 5 analyzes two alternative interventions that allows the government to improve upon the

guarantee scheme by eliminating either all runs or only the panic ones. Section 6 uses a parametric example

to illustrate the properties of the model. Section 7 concludes.

2 The basic model

The basic model is based on Goldstein and Pauzner (2005). There are three dates (t = 0, 1, 2) and a

continuum [0, 1] of banks and consumers.

Banks raise one unit of funds from consumers in exchange for a deposit contract as specified below, and

invest in a risky project. For each unit invested at date 0, the project returns 1 if liquidated at date 1 and

a stochastic return R̃ at date 2 given by

R̃ =

{
R > 1 w. p. p(θ)
0 w. p. 1− p(θ).

The variable θ, which represents the state of the economy, is uniformly distributed over [0, 1]. We assume

that p(θ) is increasing in θ and that Eθ[p(θ)]R > 1, which implies that the expected long-run return of the

project is superior to the short-run return.

Each consumer is endowed with 1 unit at date 0 and nothing thereafter. At date 0 each consumer deposits

its endowment at the bank in exchange for a promised payment c1 at date 1 or a risky payoff c̃2 at date

2. Consumers are ex ante identical but can be of two types ex post: each of them has a probability λ of
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being early and consuming at date 1, and 1−λ of being late and consuming at either date. Consumers learn

privately their type at date 1.

In addition to the consumption of the good received by the bank, each consumer derives utility also from

the provision of a public good g at date 1 and thus its preferences are given by

U(c, g) = u(c) + v(g)

with u′(c) > 0, v′(g) > 0, u′′(c) < 0, v′′(g) < 0, u(0) = v(0) = 0 and relative risk aversion coeffi cient,

−cu′′(c)/u′(c), greater than one for any c ≥ 1.

The state of the economy θ is realized at the beginning of date 1 but is not publicly revealed till date 2.

After θ is realized, each consumer receives a private signal xi of the form

xi = θ + εi, (1)

where εi are small error terms that are independently and uniformly distributed over [−ε,+ε]. After the

signal is realized, consumers decide whether to withdraw at date 1 or wait till date 2.

The bank satisfies consumers’withdrawal demands by liquidating the long term asset. If the liquidation

proceeds are not enough to repay the promised c1 to the depositors withdrawing at date 1, each of them

receives a pro-rata share of the liquidation proceeds.

The banking sector is perfectly competitive. Banks make no profits and choose the deposit contract

(c1, c̃2) at date 0 that maximizes depositors’expected utility. As a consequence, the payment c̃2 equals the

return of the nonliquidated units of the bank’s project divided by the number of remaining late depositors.

The timing of the model is as follows. At date 0, each bank chooses the promised payment c1. At

date 1, after receiving the private signal about the state of the fundamentals θ, depositors decide whether

to withdraw early or wait till date 2. At date 2, banks’project realizes and the remaining late depositors

receive a pro-rata share of the project returns.

3 The decentralized equilibrium

We start by analyzing depositors’withdrawal decisions at date 1 for a given deposit contract promising c1

to the depositors withdrawing at date 1. As in Diamond and Dybvig (1983), the promised fixed payment

must be at least 1 but less than min{1/λ,R} for the reasons explained below.

Early depositors always withdraw at date 1 to satisfy their consumption needs. Late depositors compare

the expected payoffs from going to the bank at date 1 or 2 and withdraw at the date when they expect to

obtain the highest utility. Late depositors’expected payoffs depend on the realization of the fundamentals θ

as well as on proportion n of depositors withdrawing early. Since the signal xi provides information on the
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expected date 2 repayment and the actions of the other depositors, each late depositor bases his decision on

the signal he receives. When the signal is high, a late depositor attributes a high posterior probability to

the event that the bank’s project yields the positive return R at date 2. Also, upon observing a high signal,

he infers that the others have also received a high signal. This lowers his belief about the likelihood of a run

and thus his own incentive to withdraw at date 1. Conversely, when the signal is low, a late depositor has a

high incentive to withdraw early as he attributes a high likelihood to the possibility that the project’s date

2 return will be zero and that the other depositors run.

We assume that there are two regions of extremely bad or extremely good fundamentals, where each late

depositor’s action is based on the realization of the fundamentals irrespective of his beliefs about the others’

behavior. As shown in Goldstein and Pauzner (2005), the existence of these two extreme regions, no matter

how small they are, guarantees the uniqueness of the equilibrium in depositors’withdrawal decisions. We

start with the lower region.

Lower Dominance Region. When the fundamentals are very bad (θ is very low), the expected utility

from waiting until date 2, p(θ)u( 1−λc11−λ R), is lower than that from withdrawing at date 1, u(c1), even if only

the early depositors were to withdraw (n = λ). If, given his signal, a late depositor is sure that this is the

case, running is a dominant strategy. We then denote by θ(c1) the value of θ that solves

u(c1) = p(θ)u(
1− λc1
1− λ R),

that is

θ(c1) = p−1

(
u(c1)

u( 1−λc11−λ R)

)
. (2)

We refer to the interval [0, θ(c1)) as the lower dominance region, where runs are only driven by bad

fundamentals. Note that θ(c1) is increasing in c1 as we have

∂θ(c1)

∂c1
=

p−1[
u( 1−λc11−λ R)

]2 [u′(c1)u(1− λc11− λ R) +
u(c1)λR

1− λ u′(
1− λc1
1− λ R)

]
> 0

since u′(c1) > 0. Thus, as c1 increases, the lower dominance region becomes bigger and fundamental runs

are more likely to occur.

For the lower dominance region to exist for any c1 ≥ 1, there must be feasible values of θ for which all

late depositors receive signals that assure them to be in this region. Since the noise contained in the signal

xi is at most ε, each late depositor withdraws at date 1 if he observes xi < θ(c1)−ε, that is if θ < θ(c1)−2ε.

Given that θ is increasing in c1, this condition is satisfied for any c1 ≥ 1 if θ(1) > 2ε.

Upper Dominance Region. The upper dominance region of θ corresponds to the range
(
θ, 1
]
in which

fundamentals are so good that no late depositors withdraw at date 1. Following Goldstein and Pauzner
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(2005), we assume that in this region the project is safe, i.e., p(θ) = 1, and that it gives the same return R

at dates 1 and 2. Given c1 < min{1/λ,R}, this ensures that the bank does not need to liquidate more units

than the number n of depositors withdrawing at date 1. Then, when a late depositor observes a signal in

the interval (θ, 1], he is certain to receive his payment 1−λc1
1−λ R at date 2, irrespective of his beliefs on other

depositors’action, and thus he has no incentives to run.

Similarly to before, the upper dominance region exists if there are feasible values of θ for which all late

depositors receive signals that assure them to be in this range. This is the case if θ < 1− 2ε.

The Intermediate Region

The two dominance regions are just extreme ranges of fundamentals in which late depositors have a dominant

strategy that depends only on the fundamentals θ. In the intermediate range
[
θ(c1), θ

]
a depositor’s decision

to withdraw early depends on the realization of θ as well as on his beliefs regarding other late depositors’

actions.

To determine late depositors’withdrawal decisions in this region, we calculate their utility differential

between withdrawing at date 2 and at date 1 as given by

v(θ, n) =


p(θ)u

(
1−nc1
1−n R

)
− u(c1) if λ ≤ n < n∗

0− u( 1n ) if n∗ ≤ n < 1,
(3)

where n∗ = 1/c1 < 1. The expression for v(θ, n) states that as long as the bank does not exhaust its

resources at date 1, i.e., for n < n∗, late depositors waiting till date 2 obtain the residual 1−nc11−n R with

probability p(θ) while those withdrawing early obtain c1. By contrast, for n ≥ n∗ the bank liquidates its

entire project at date 1. Each late depositor receives nothing if he waits till date 2 and the pro-rata share 1/n

when withdrawing early. The function v(θ, n) is decreasing in n for n < n∗ and increases with n afterwards.

However, as the function crosses zero only once for n < n∗ and always remains below afterwards, the model

exhibits the property of one-sided strategic complementarity as in Goldstein and Pauzner (2005) since v(θ, n)

is decreasing in n whenever it is positive. Thus, there exists a unique equilibrium in which a late depositor

runs if his signal is below a certain threshold.

Lemma 1 The model has a unique equilibrium in which late depositors run if they observe a signal below

the threshold x∗(c1) and do not run above. At the limit, as ε→ 0, x∗(c1) simplifies to

θ∗(c1) = p−1

u(c1) [1− λc1] + c1 ∫ 1n=1/c1 u( 1n )
c1
∫ 1/c1
n=λ

u
(
1−nc1
1−n R

)
dn

 . (4)

The threshold θ∗(c1) is increasing in c1.

Proof. See the appendix.
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The lemma states that a late depositor’s action depends uniquely on the signal he receives as it provides

information on other depositors’ actions. In the range
[
θ(c1), θ

]
late depositors do not have a dominant

strategy and, due to strategic complementarity, each of them withdraw at date 1 in the interval [θ(c1), θ
∗(c1))

because he expects the others to do the same. Thus, in the intermediate region runs are panic-driven. These

occur only if c1 > 1 as otherwise, there would be no coordination problem among depositors and runs would

only be driven by fundamentals.

The threshold θ∗(c1) increases with the promised payment c1. The higher c1 the lower is the payoff c̃2

and thus the stronger is the incentive for each late depositors to withdraw early. This implies that the bank’s

choice of the optimal deposit contract has a direct impact on the probability of occurrence of runs at date 1.

Now that we have characterized the unique equilibrium in depositors’withdrawal decisions, we turn to

the bank’s choice of deposit contract at date 0. To do this, we focus on the limit case where ε→ 0 and only

complete runs occur since all late depositors receive the same signal and take the same action.

At date 0 each bank chooses c1 to maximize the expected utility of a representative depositor, which is

given by ∫ θ∗(c1)

0

u (1) dθ +

∫ 1

θ∗(c1)

[
λu(c1) + (1− λ)p(θ)u

(
1− λc1
1− λ R

)]
dθ + v(g). (5)

The first term represents depositors’expected utility for θ < θ∗(c1), when a run occurs, the bank liquidates

its entire project and each depositor obtains 1. The second term is depositors’expected utility when, for

θ ≥ θ∗(c1), the bank continues till date 2. The λ early consumers withdraw early and obtain c1, while the

(1 − λ) late depositors wait and receive the payment 1−λc1
1−λ R with probability p(θ). The last term is the

utility that depositors receive from the consumption of the public good g. We have the following result.

Proposition 1 The optimal deposit contract cD1 > 1 in the decentralized solution solves

λ

∫ 1

θ∗(c1)

[
u′(c1)− p(θ)Ru′

(
1− λc1
1− λ R

)]
dθ + (6)

−∂θ
∗(c1)

∂c1

[
λu(c1) + (1− λ)p(θ∗(c1))u

(
1− λc1
1− λ R

)
− u(1)

]
= 0.

Proof. See the appendix.

The choice of c1 trades off the positive effect of a higher c1 on better risk sharing (as represented by the

first term in (6)) with the negative effect in terms of a higher probability of panic runs (as represented by

the second term in (6)). At the optimum, the bank chooses cD1 > 1 in order to provide some risk sharing

although this entails panic runs.

The decentralized solution is ineffi cient in various respects. First, banks offer too little risk-sharing to

depositors. If runs did not occur, the bank would choose c1 as the solution to u′(c1) = Eθ[p(θ)]Ru
′
(
1−λc1
1−λ R

)
.

When runs are anticipated, the bank chooses a lower level of c1 in order to limit the likelihood of their
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occurrence and thus offers an ineffi cient risk sharing. Second, runs entail ineffi cient liquidation. For each

unit of project that the bank liquidates, the return R is foregone with probability p(θ). Thus, liquidation is

ineffi cient whenever a depositor obtains an utility from the liquidated unit which is lower than the utility he

would obtain from the same unit if invested till date 2. Formally, this is the case for any θ ≥ θE , where θE

is the solution to

u(1) = p(θ)u(R). (7)

Since cD1 > 1, θE < θ(c1) < θ∗(c1). This implies that in the decentralized solution panic runs are always

ineffi cient while fundamental runs are ineffi cient only in the range
(
θE , θ(c1)

)
.

4 Government intervention at date 1

So far we have showed that the decentralized solution is ineffi cient because it entails suboptimal risk sharing

and ineffi cient liquidation of the bank’s project. In this session we analyze the possibility for the government

to improve upon the decentralized solution by transferring some public resources to the banking sector at

date 1 in the case that a run occurs. The aim of the intervention is twofold. First, it aims at limiting the

coordination problem among depositors and, in turn, the occurrence of runs. Second, it allows depositors to

obtain a higher repayment in the case of runs, thus improving upon the decentralized allocation. However,

the anticipation of the government intervention introduces a bank moral hazard problem in the choice of the

optimal deposit contract. As they do not internalize the cost of the intervention, banks have an incentive to

choose an excessively high promised payment c1 to exploit the public guarantee. This in turn increases the

likelihood of runs and thus the fragility of the banking system. Depending on the size of the public good g,

the government may then choose to intervene less than what would be required to eliminate runs in order to

control the bank moral hazard problem. When this is the case, both fundamental and panic runs still occur

even in the presence of government intervention. Even more, given the bank moral hazard problem, runs may

be more likely than in the decentralized solution. Despite this, since it allows depositors to obtain a higher

payment in case of a run, the government intervention improves the allocation as long as the intervention is

not too costly relative to the amount of public resources g available.

To take account of the bank moral hazard problem, we consider a more general form of government

intervention than the standard deposit insurance à la Diamond and Dybvig (1983) in which all depositors

withdrawing early are guaranteed to receive the promised payment c1. Specifically, we consider that the

government transfers some of the resources g to the banking sector at date 1 after the first α ≥ λ depositors

withdraw. The size of α determines the payoffs that depositors obtain in case of a run and the size of

the transfer. The government can either intervene before or after the bank liquidates the entire project.
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In the first case, when α ≤ n∗ = 1
c1

< 1, the bank is paying c1 to the withdrawing depositors at the

time of the intervention, while, in the second case, when α > n∗, it is paying the pro-rata share 1
α . The

government guarantees the same payments as those paid by the bank at the time of the intervention to the

n− α withdrawing depositors so that these depositors obtain the same payments as the first α withdrawing

depositors. The government transfers to the banking sector the minimum amount needed to guarantee these

payments and removes the coordination problem among the n − α late depositors. This means that, when

α ≤ n∗, the bank only liquidates 1−αc11−α units of the project for each of the n−α late depositors running and

the government transfers (c1− 1−αc1
1−α ) for each of them to the bank. In contrast, when α > n∗, the bank has

already exhausted its resources and the government transfers to the banking sector 1
α for each of the n > α

withdrawing depositors.

The government intervention is credible as long as the amount of the public transfer does not exceed the

resources g available in the economy. If this is not the case, depositors anticipate that the public guarantee

is not feasible and the equilibrium is the same as without intervention. In the rest of the analysis, we restrict

our attention to the case where the amount of public good g is suffi cient to cover the transfer to the banking

sector so that the government intervention is fully credible.

The timing of the model is as follows. At date 0, the government chooses first the optimal value of α and

then the bank chooses c1. At date 1, after receiving the private signal about the state of the fundamentals

θ, depositors decide whether to withdraw early or wait till date 2. As before, we solve the model backward

starting with depositors’withdrawal decisions. We start characterizing the run thresholds θ(c1) and θ
∗(c1)

for a generic ε > 0 and we then focus on the limit case ε→ 0.

The lower and the upper dominance regions are the same as in the decentralized equilibrium, and the

upper bound of the lower dominance region θ(c1) is still given by (2). The determination of the intermediate

region is more complicated. Late depositors know c1 and α when making their decisions, and thus they

know the amount of bank’s resources available at the time of the intervention. This implies that we need to

distinguish two cases for the determination of the threshold θ∗(c1), depending on whether α R n∗.

We start with the case where α ≤ n∗. In this case, the utility differential for a late depositor between

withdrawing at date 2 versus date 1 is given by

v1(θ, n, α) =


p(θ)u

(
1−nc1
1−n R

)
− u(c1) if λ ≤ n < α

p(θ)u
(
1−αc1
1−α R

)
− u(c1) if α ≤ n ≤ 1.

(8)

The utility differential is a piecewise function, which now depends on both n and α. For λ ≤ n < α,

the government does not intervene and a late depositor’s payoff is the same as in the decentralized solution.

He obtains 1−nc1
1−n R with probability p(θ) when waiting till date 2 and c1 when withdrawing at date 1. The
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date 2 payoff decreases in the number of withdrawing depositors n. For α ≤ n ≤ 1, a late depositor’s obtains

now the constant repayment of 1−αc11−α R with probability p(θ) if he waits and c1 if he withdraws prematurely.

The reason is that the government intervention limits the liquidation of the bank’s asset for n ≥ α, thus

removing the dependence of the date 2 repayment on the number of depositors withdrawing early.

In the case where α > n∗, the utility differential is equal to

v2(θ, n, α) =


p(θ)u

(
1−nc1
1−n R

)
− u(c1) if λ ≤ n < n∗

u(0)− u
(
1
n

)
if n∗ ≤ n < α

u(0)− u
(
1
α

)
if α ≤ n ≤ 1.

(9)

The expression for v2(α, θ, n) has three intervals depending on the values of n and α. In the first two

intervals a late depositor’s payoffs are the same as in the decentralized solution since the government does

not intervene. In the last interval the government intervenes, thus affecting the payoffs in the case of runs.

For λ ≤ n < n∗ the bank does not exhaust its resources at date 1. A late depositor obtains 1−nc1
1−n R with

probability p(θ) when waiting till date 2 and c1 when withdrawing at date 1. By contrast, for n ≥ n∗ the bank

exhausts its resources at date 1. A late depositor waiting till date 2 always obtains nothing. By contrast, a

late depositor withdrawing at date 1 receives 1
n for n

∗ ≤ n < α and 1
α for α ≤ n ≤ 1 when the government

intervenes and uses the public good to guarantee that the remaining n − α depositors withdrawing early

obtain a constant payment irrespective of n.

The functions v1(θ, n, α) and v2(θ, n, α) have different properties. The former is decreasing in n for

λ ≤ n < α ≤ n∗, and is constant afterwards. The latter is decreasing in n for n < n∗, increasing in n

for n∗ ≤ n < α when it is negative, and constant for α ≤ n ≤ 1. Similarly to the function v(θ, n) in the

decentralized economy described in (3), the function v2(θ, n, α) crosses zero only once when it is positive

and decreasing in n. This implies that the model with the government intervention exhibits the property

of global strategic complementarity for α ≤ n∗, while it satisfies one-sided global strategic complementarity

for α > 1
c1
. As in the basic model with no government intervention, the model has a unique equilibrium in

depositors’withdrawal decisions.

Lemma 2 The model has a unique equilibrium in which late depositors run if they observe a signal below

the thresholds x∗1(c1, α) and x
∗
2(c1,α) and do not run above. At the limit, as ε→ 0, the equilibrium thresholds

x∗1(c1, α) and x
∗
2(c1, α) simplify to

θ∗1(c1, α) = p−1

 (1− λ)u(c1)∫ α
n=λ

u
(
R 1−nc1

1−n

)
+
∫ 1
n=α

u
(
R 1−αc1

1−α

)
 (10)
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if α ≤ n∗ and

θ∗2(c1, α) = p−1

 ( 1c1 − λ)u(c1) + ∫ αn=1/c1 u ( 1n)+ (1− α)u ( 1α)∫ n∗
n=λ

u
(
R 1−nc1

1−n

)
 (11)

when α > n∗.

The threshold θ∗1(c1, α) is increasing both in c1 and α, while θ
∗
2(c1, α) is increasing in c1 but decreasing in α.

Proof. See the appendix.

As in the decentralized economy, runs occur when the fundamentals are in the interval [0, θ∗i (c1, α)), with

i = 1, 2. As before, runs are fundamental-driven for θ ∈ [0, θ(c1)) and panic-driven for θ ∈ [θ(c1), θ∗i (c1, α)).

The threshold θ∗i (c1, α) depends now both on the promised date 1 consumption and the size of government

intervention as represented by α. A higher c1 always increases the likelihood of runs, while the government

intervention has a different effect depending on the value of α. In particular, a higher α reduces the likelihood

of panic runs for α ≤ n∗, while it increases it for α > n∗. The reason is that the government reduces the

strategic complementarity between depositors’actions for α ≤ n∗ as by intervening it limits the liquidation of

the bank’s asset. By contrast, for α > n∗, the bank has already liquidated all its project and the government

intervention has the only effect of increasing the repayment of the n− α withdrawing depositors at date 1.

The more the government intervenes (i.e., the lower α is), the higher the date 1 repayment in case of a run

and thus the stronger depositors’incentives to withdraw early.

The two run thresholds θ∗1(c1, α) and θ
∗
1(c1, α) are continuous, that is

θ∗1(c1, α) = θ∗2(c1, α)

at α = n∗. Moreover, when the government decides not to intervene and chooses α = 1, we have

θ∗2(c1, 1) = θ∗(c1) (12)

and depositors’withdrawal decisions are the same as in the decentralized economy without intervention. In

the opposite case, when the government intervenes as soon as more than λ early depositors withdraw by

choosing α = λ, it holds that

θ∗1(c1, λ) = θ(c1)

so that only fundamental runs occur.

This discussion highlights one of the main results of our model, namely that the government intervention

has an important direct effect on the likelihood and types of runs. By choosing to intervene immediately

and set α = λ, the government can remove all panic runs. By choosing not to intervene and set α = 1 the

decentralized solution is replicated. For any λ < α < 1 both fundamental and panic runs occur. When

choosing the size of α, the government takes into account the effects of its choice on the likelihood of
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runs. Differently from other papers like Keister (2010), the precise size of α matters in our model since the

thresholds θ∗i (c1, α) with i = 1, 2 are fully endogenous.

Having characterized depositors’ withdrawal decisions at date 1 for given c1 and α, we now turn to

the bank’ choice of the optimal deposit contract and the government choice of α at date 0. As in the

decentralized solution, we focus on the limit case when ε→ 0. We start with the bank’s choice of c1. Given

α and anticipating depositors’withdrawal decisions, at date 0 each bank chooses c1 to maximize

Max
c1



∫ θ∗1(c1,α)
0

u (c1) dθ +
∫ 1
θ∗1(c1,α)

[
λu(c1) + (1− λ)p(θ)u

(
1−λc1
1−λ R

)]
dθ+∫ θ∗1(c∗1 ,α)

0
v (g − (c∗1 − 1)) dθ +

∫ 1
θ∗1(c

∗
1 ,α)

v (g) dθ
if α ≤ n∗

∫ θ∗2(c1,α)
0

u
(
1
α

)
dθ +

∫ 1
θ∗2(c1,α)

[
λu(c1) + (1− λ)p(θ)u

(
1−λc1
1−λ R

)]
dθ+∫ θ∗2(c∗1 ,α)

0
v
(
g − 1−α

α

)
dθ +

∫ 1
θ∗2(c

∗
1 ,α)

v (g) dθ
if α > n∗,

(13)

where c∗1 denotes the equilibrium value of c1 chosen by all banks. For a given α, each bank chooses the

deposit contract c1 that maximizes depositors’expected utility. This is a piecewise function as it depends

on whether α S n∗. The terms in the two expressions in (13) have a similar meaning in both ranges of

α. The first term represents depositors’expected utility when a run occurs for θ < θ∗i (c1, α). Depositors

withdrawing at date 1 receive c1 if α ≤ n∗ and a repayment 1
α ∈ [1, c1] if α > n∗. The second term is

depositors’expected utility when for θ∗i (c1, α) ≤ θ ≤ 1 only the λ early consumers withdraw at date 1 and

there is no run. The last two terms in each expression represent depositors’expected utility from the public

good. For θ < θ∗i (c1, α) a run occurs and depositors enjoy the public good that remains after the transfer to

the banking sector. If α ≤ n∗ the government uses c∗1−1 of the public good to guarantee the repayment c1 to

the 1−α withdrawing depositors and the utility v is derived from the remaining g− (c∗1−1) units. If α > n∗

the government transfers 1−α
α to guarantee the constant payment 1

α to the 1 − α depositors withdrawing

after the intervention. Thus, depositors enjoy the utility v
(
g − 1−α

α

)
from the remaining units of public

good. For θ∗i (c1, α) ≤ θ ≤ 1 no transfer takes place and depositors obtain utility v(g) from the public good

irrespective of the value of α. Banks do not internalize the cost for the provision of the guarantee when

choosing the optimal deposit contract. The reason is that each bank is atomistic and takes the equilibrium

consumption as given.

The solution to the bank’s problem is summarized in the following proposition.

Proposition 2 The optimal deposit contract c∗1(α) depends on the size of the government intervention α as

follows:

i) When α = λ, the optimal deposit contract is c∗1(λ) → c11(λ), where c11(λ) is defined by the following

equation

lim
c1→c11(λ)

θ∗1(c
∗
1(λ), λ) = θ(c1) = θ
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and runs occur in the range
[
0, θ
]
. The threshold c11(α) is decreasing in α.

ii) When α = 1, c∗1(1) = cD1 > 1/α and runs occur in the range [0, θ∗2(c∗1(1), 1)), where θ∗2(c∗1(1), 1) =

θ∗(c1) < θ as defined in (12).

Proof. See the appendix.

The proposition shows that the bank’s choice of c1 depends crucially on the size of α. When the govern-

ment intervenes as soon as a run occurs, i.e., when α = λ, the bank chooses the maximum possible level of

c1. The date 1 promised payment approaches the threshold value c11(λ) at which runs occur except when θ

lies in the upper dominance region θ ∈
(
θ, 1
]
. The threshold value c11(α) is decreasing in α, suggesting that

the optimal choice of c∗1(α) must be decreasing as well. When the government chooses not to intervene, i.e.,

when α = 1 the bank chooses the same date 1 payment as in the decentralized solution and runs occur with

the same likelihood as there.

The proposition suggests two important insights. First, the government intervention introduces a moral

hazard problem in the bank’s choice of the optimal deposit contract. Since banks do not internalize the

cost of the intervention in terms of a lower provision of the public good g, they have an incentive to choose

an excessively high c1 to exploit the guarantee. The optimal choice of c1 maximizes depositors’expected

utility from depositing at the bank, disregarding the effect of a higher c1 on the utility deriving from the

consumption of the public good. The moral hazard problem is maximum when α = λ since depositors are

guaranteed to obtain c1 as chosen by the bank in case of a run. The government can limit the moral hazard

problem by choosing to intervene less and, at the limit, not to intervene at all. Second, besides the direct

effect as analyzed in Lemma 2, the government intervention has also an indirect effect on the likelihood of

runs through the bank’s choice of c1. When α = λ, the government intervention eliminates the coordination

problem among depositors and thus only fundamental runs occur. When α > λ, this problem is not fully

eliminated and panic runs remain.

Having characterized the bank’s choice of the optimal deposit contract, we now turn to the government’s

choice of α. Given banks’optimal choice c1, the government chooses α at date 0 to maximize depositors’

total expected utility. This is given by the same two expressions as in (13) evaluated at the bank’s optimal

choice c∗1(α). The following result illustrates how the optimal size of government intervention depends on

the amount of public resources g available.

Proposition 3 Define g as the cutoff value of public resources such that α = λ is optimal. Then, the

government chooses to limit its intervention and set α > λ for any amount of public resource g < g. As a

consequence, panic runs still occur.

Proof. See the appendix.
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The proposition shows that when its budget is tight, i.e., when g < g, the government limits its

intervention by choosing α > λ. As a consequence, panic runs are not fully prevented. The government

chooses the optimal size of α to maximize depositors’ total expected utility. In doing this, it takes into

account the effect that this choice has on banks’and depositors’behavior. In particular, the government

anticipates that the intervention entails a moral hazard problem on the side of the banks as they have

an incentive to exploit the guarantee and choose an excessively high c1. The bank’s choice influences the

likelihood of runs besides the direct effect of α. When the government’s budget is tight, the bank moral

hazard problem entails large costs. Given the concavity of the function v(g), even a small reduction in the

provision of the public good generates a large disutility. Thus, the government finds it optimal to contain the

bank moral hazard problem by limiting its intervention and choosing α > λ. The bank then chooses a lower

c1, which translates ceteris paribus in a lower probability of runs. However, panic runs are not eliminated

since for α > λ the depositors’coordination problem is not fully prevented.

The consequence of all this is that, although the main objective of the public intervention is to reduce the

likelihood of runs relative to the decentralized economy, the government may be unable to do so. Because

of the bank moral hazard problem, the government may be forced to intervene less than what is required

to eliminate panic runs when it has limited budget. Still, banks may choose a level of c1 such that runs are

more likely with the government intervention than without. Given this, in the next section we analyze two

alternative guarantee schemes that may improve upon the government intervention analyzed in this section.

5 Improving upon government intervention

In the previous section we have analyzed a guarantee scheme in which the government chooses to transfer

some public resources g to the banking sector at date 1 after the first α ≥ λ depositors withdraw. The

intervention has the objective of reducing the likelihood of runs, thus improving the risk sharing that banks

offer to depositors and limiting the ineffi cient premature liquidation of the banks’project. However, it fails

to do so because of the bank moral hazard problem. To contain this, the government intervenes less than

what would be requires to eliminate the coordination problem among depositors. As a consequence, the

intervention increases depositors’payment in case of a run, but it fails to prevent the occurrence of panic

runs and to limit the ineffi cient liquidation of the banks’projects.

In this section, we analyze two ways to improve upon the government intervention analyzed in the

previous section. The first possibility is for the government to control the choice of the bank’s deposit

contract or, taken it to the extreme, to choose the promised date 1 payment to depositors directly. The

second possibility is for the government to offer a guarantee such that all runs −both fundamental and
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panic-driven− are prevented. We start with the first case.

5.1 Avoiding the moral hazard problem

Consider now that the government chooses both the size of the intervention α and the deposit contract c1.

Then, as before, the government transfers resources from the public good g to the banking sector after the

first α ≥ λ depositors withdraw. As there is no bank moral hazard problem now, the government always

intervenes before the bank has liquidated the entire project and still pays c1 to the withdrawing depositors.

This implies that α ≤ n∗ and that the government transfers (n − α)
(
c1 − 1−αc1

1−α

)
to each bank when it

intervenes. This allows the bank to pay c1 to all the n ≥ α depositors withdrawing early while liquidating

only 1−αc1
1−α < 1 resources per depositor.

The problem is similar to the one in Section 4. Anticipating depositors’withdrawal decisions, at date 0

the government chooses the size of the intervention α and the deposit contract c1 to maximize depositors’

total expected utility. Depositors’withdrawal decisions are as in Lemma 2 with the difference that we have

to consider only the case where α < n∗ and thus only the run threshold θ∗1(c1, α) as defined in (10). Given

this, and focusing again on the limit case for ε→ 0 when only complete runs occur (i.e.,n = 1) and the size

of the transfer is c1 − 1, we can write the government’s problem as given by

Max
α,c1

∫ θ∗1(c1,α)

0

u (c1) dθ +

∫ 1

θ∗1(c1,α)

[
λu(c1) + (1− λ)p(θ)u

(
1− λc1
1− λ R

)]
dθ (14)

+

∫ θ∗1(c1,α)

0

v (g − (c1 − 1)) dθ +
∫ 1

θ∗1(c1,α)

v (g) dθ

subject to

g − (c1 − 1) ≥ 0 (15)

The problem is as the one in (13) for α ≤ n∗ with the important difference that the government internalizes

now the cost of the intervention when choosing c1. This changes the last two terms in (14) representing

depositors’utility from the provision of the public good relative to the problem in (13) in that there is now

c1 instead of c∗1. Also, the government takes into account that the choice of c1 has an implication on the

feasibility of the intervention. In other words, as required by (15), the government internalizes that the

transfer c1 − 1 cannot exceed the total amount of public good available. We have the following result.

Proposition 4 A government that chooses the size of the intervention α and the optimal deposit contract

c1 intervenes after α = λ depositors withdraw at date 1 and sets

cG1 = min
{
c̃G1 , g + 1

}
,
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where c̃G1 ≥ 1 is the solution to∫ θ(c1)

0

u′ (c1) dθ + λ

∫ 1

θ(c1)

[
u′(c1)− p(θ)Ru′

(
1− λc1
1− λ R

)]
dθ+

−∂θ(c1)
∂c1

[v(g)− v (g − (c1 − 1))]−
∫ θ(c1)

0

v′(g − (c1 − 1))dθ = 0 (16)

and θ(c1) is defined in (2).

Proof. See the appendix.

The proposition shows that the government optimally chooses α = λ and a payment cG1 that, depending

on the size of g, is either unconstrained and equal to the solution to (16) or a corner solution. The former

trades off a higher payment in case of runs and better risk sharing with a lower provision of g. This solution is

attained when g is large enough and/or the function v(g) is not too concave. The latter, which is the solution

when g is such that (15) binds, corresponds to the maximum value of cG1 = g+1 that makes the government

intervention feasible and, thus, credible. For either values of cG1 , only fundamental runs occur. The reason

is that by choosing α = λ, the government eliminates the coordination problem among depositors. Given

this, late depositors base their withdrawal decision on the fundamentals and run only if they receive a signal

θ ≤ θ(c1). Still, whenever cG1 > 1, these fundamental runs are not always effi cient as they entail an ineffi cient

premature liquidation of the bank’s asset for θ(c1) > θE , where θE is as in (7). Only in the case when cG1 = 1

and θ(1) = θE runs always entail an effi cient liquidation of the bank’s project.

The allocation described in Proposition 4 in which the government chooses both the size of the intervention

and the optimal deposit contract does not entail any form of moral hazard problem and improves the

allocation in which the choice of c1 is made by the banks in various ways. First, the government intervenes

as soon as a run starts. As a consequence, it removes the occurrence of panic runs. Second, depositors

always receive c1 in the case of a run, as the government does not need to limit its intervention to control

the bank moral hazard problem. However, despite being clearly beneficial, this intervention may not be

possible as it requires that the government has control over the choice of c1. Such a control may be banned

in practice, for example for reasons related to antitrust regulation. When this is the case, the government

may offer a different form of guarantee to improve the allocation found in Section 4, which eliminates all

runs, both fundamental and panic-driven. Although this intervention may entail an even more severe bank

moral hazard problem, it has the advantage of eliminating the effect of c1 on the likelihood of runs and thus

improve on the allocation of Section 4.

5.2 Eliminating runs

Consider now the case where the government uses the public good to guarantee c1 to all depositors, either

at date 1 or date 2, irrespective of whether the bank is solvent at date 2. Under this scheme, runs do not
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occur any longer. Waiting till date 2 is a dominant strategy for the late depositors as at date 2 they obtain

the payment 1−λc1
1−λ R with probability p(θ) and c1 with probability 1− p(θ). Anticipating this, each bank’s

maximization problem at date 0 is given by

Max
c1

∫ 1

0

[
λu(c1) + (1− λ)

(
p(θ)u

(
1− λc1
1− λ R

)
+ (1− p(θ))u (c1)

)]
dθ+

+

∫ 1

0

[p(θ)v(g) + (1− p(θ))v (g − (1− λ)c∗1)] dθ (17)

with c∗1 denoting the equilibrium value of c1 chosen by all banks. The first term in (17) represents depositors’

utility from depositing in the bank. Since there are no runs, the λ early depositors obtain c1 at date 1, while

the 1 − λ late depositors obtain either 1−λc1
1−λ R with probability p(θ) or c1 with probability 1 − p(θ). The

second term is the utility from the public good. Each depositor enjoys an utility v(g) with probability p(θ)

and v (g − (1− λ)c∗1) with probability 1−p(θ) when the government intervenes and transfers (1−λ)c∗1 to the

bank so that each late depositors obtains c∗1. As in Section 4, the bank does not internalize the cost of the

transfer when choosing c1. The solution to the bank’s problem is summarized in the following proposition.

Proposition 5 When the government guarantees c1 to all depositors either at date 1 or 2, each bank chooses

cDI1 as given by the solution

λ

∫ 1

0

[
u′(c1)− p(θ)Ru′

(
1− λc1
1− λ R

)]
dθ + (1− λ)

∫ 1

0

(1− p(θ))u′(c1)dθ = 0. (18)

Proof. See the appendix.

The optimal deposit contract cDI1 trades off the benefit of a higher c1 in terms of better risk sharing and

higher payment at date 2 when the bank is insolvent with the cost in terms of lower payment at date 2 when

the bank remains solvent. The proposition highlights that this government guarantee entails again a moral

hazard problem since banks do not internalize the cost of the guarantee as represented by a lower provision

of the public good. Differently from before though, the bank’s choice of c1 does not affect the likelihood

of runs, which are completely eliminated, but only the cost of the intervention (1 − λ)c∗1. Whether this

guarantee represents an improvement relative to the intervention analyzed in Section 4 crucially depends on

the probability 1− p(θ) and the size of the public good g, as we show in the next section.

6 A numerical example

In this section we illustrate the properties of the model and in particular the comparison across the various

forms of government intervention with the use of a numerical example. We consider the following functional

forms for the utility function:

u(c) + v(g) =
(c+ f)1−σ

1− σ − (f)
1−σ

1− σ +
(g + f)1−σ

1− σ − (f)
1−σ

1− σ ,
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and assume p(θ) = θ, σ = 3, R = 5, λ = 0.3 and f = 4. Regarding the upper dominance region, we

assume that θ approaches to 1. We consider different amount of the public good g to show how the optimal

government intervention, banks’ deposit contract and depositors’withdrawal decisions change depending

on the amount of public resources available in the economy. Specifically, we analyze the following cases:

g = 1.55, g = 2 and g = 2.5.

The decentralized economy without government intervention and the desirability of the intervention

In this section we report the results relative to the decentralized economy without government intervention

(or, equivalently, α = 1) and we compare them with those relative to the case in which the government

transfers resources from the public good g to the banking sector after the first α ≥ λ depositors withdraw

at date 1.

Insert Table 1

Table 1 shows that there is scope for government intervention. For any possible values of g, the government

always chooses to intervene (i.e., α < 1), depositors receive a higher repayment in the case of a run and a

higher expected utility than in the decentralized solution without intervention. However, the introduction

of the guarantee scheme entails a moral hazard problem on the side of the banks as represented by the fact

that c1 is always higher in the solution with intervention than in the one without government intervention.

As a consequence, there are more fundamental runs than in the decentralized solution and panic runs are

not fully prevented. In order to control for the moral hazard problem and contain its costs, the government

is forced to limit the size of the intervention α. Since the costs of the intervention, as represented by a lower

provision of the public good, are larger when the public resources g are limited, the government reduces the

size of the intervention α as g decreases (α = 0.95 when g = 1.55 instead of α = 0.8946 when g = 2 and

α = 0.7 when g = 2.5). This leads to a lower c1 and, in turn to a lower likelihood of runs as shown in Figure

1.

Insert Figure 1

The example described above shows that, in a context where banks’and depositors’withdrawal decisions

are endogenously determined and both fundamental and panic runs are possible, government intervention

crucially affects the deposit contract c1 offered by banks, the probability and the type of runs. On the one

hand, the introduction of the guarantee scheme improves depositors’payoff in case of a run. On the other

hand, it affects the likelihood of crisis−both panic and fundamental ones−. The effect on the probability of a

run is twofold. While the anticipation of the intervention by depositors reduces the coordination problem and

thus, their incentive to run, it also increases banks’incentive to exploit the guarantees by offering a higher
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payment in case of an early withdrawal, which in turn increases the likelihood of runs. The government

chooses the optimal size of the intervention balancing these two effects and optimally allocates resources

between the private and the public good. The moral hazard problem on the side of the banks and its

negative effect on the likelihood of runs forces the government to limit the size of the intervention, especially

when its costs are high (i.e., when g is low). As a consequence, panic runs are not fully prevented.

Improvements upon the government intervention

In this section we turn to analyze the two alternative scheme that improves upon the government inter-

vention by limiting the occurrence of runs−both types or only the panic ones−.

Thus, we present three tables, for the values g = 1.55, g = 2 and g = 2.5.

Insert Table 2,3 and 4

Comparing Tables 1 with 2, 3 and 4 shows that the scheme in which the government chooses both the

size of the intervention α and the deposit contract c1 represents, for any value of g, the best allocation

as illustrated in Figure 2. By choosing α = λ, the government removes all panic runs while leaving only

the fundamental ones. Independently of the amount of resources g, the government offers a higher level of

c1 than in the solution in which the choice of the deposit contract is made by the banks (i.e., cG1 > cα1 ).

Nevertheless, when g is not too small (i.e., except in the case where g = 1.55) there are fewer runs than in

the solution in which the government cannot control c1.

When the choice of the deposit contract is made by the banks, the desirability of the different forms of

intervention depends crucially on the amount of resources g available in the economy. The scheme in which

the government chooses the size of the intervention α is the best one for g = 1.55 and g = 2. However, for

g = 2.5 the deposit insurance scheme promising at least c1 to all depositors and eliminating all types of runs

dominates. This is due to the fact that, when the amount of resources g is large, the government is less

concerned about limiting the moral hazard problem on the side of the bank. Thus, the government chooses a

lower α and, in turn banks set a higher c1 and more runs occur. By contrast, the deposit insurance scheme

guaranteeing c1 removes all runs and, even if it entails a greater moral hazard problem (cDI1 > cα1 ), it ensures

a higher depositors’total expected utility.

Insert Figure 2

21



7 Concluding Remarks

In this paper we have developed a simple model where both panic and fundamental runs are possible and both

banks’and depositors’decisions are endogenously determined. We have shown that government intervention

is desirable as it reduces the ineffi ciency of the decentralized economy arising from the coordination problem

among consumers. However, the introduction of government’s guarantees generates a tradeoff. On the one

hand, by limiting the premature liquidation of banks’ asset, government intervention reduces depositors’

incentives to run and thus the probability of crises. On the other hand, as banks do not fully internalize the

costs of the intervention, it induces them to take excessive risk in the form of a higher repayment offered

to consumers withdrawing early. In some cases, the moral hazard problem on the side of the banks offsets

the benefits of the introduction of the guarantee scheme leading to ineffi cient outcomes in which the system

is more fragile than in the case without intervention and the disbursement for the government is large. To

account for the moral hazard problem, we have considered a more general form of government intervention

than the standard deposit insurance à la Diamond and Dybvig in which the government chooses the optimal

size of the intervention. By limiting the level of guarantees, the government reduces banks’ incentives to

exploit the guarantees but panic runs still occur as the intervention does not fully remove the coordination

problem among depositors.

We consider ways for the government to improve upon its guarantees by preventing the occurrence of

runs-either both types or only the panic ones-. One possibility is for the government to control the choice

of the deposit contract set by the banks. While it allows the government to set a high level of insurance

and, thus to completely prevent the occurrence of panic runs, this solution may not always be feasible as

it requires the government to control the amount of risk taken by the banks. A second possibility is a

scheme that ensures the payment even in the long run with the consequence that both fundamental-based

and panic-based runs are prevented. In this case, the moral hazard problem can be still severe, which means

that the government will have to bear huge losses in the case banks are insolvent. We have shown that the

optimal level of guarantees depends on the amount of resources available to finance the scheme. In economies

in which the government has a tight budget, the consequences of the moral hazard problem are severe. In

this case, the most effi cient form of intervention is a more moderate form of intervention which limits moral

hazard by leaving panic runs. On the contrary, when government has a large amount of resources to transfer

to the banking sector, blanket guarantees, which removes all types of runs, are more effi cient than other

more moderate form of intervention.

The paper offers an ideal framework to evaluate the implications of government guarantees, as the likeli-

hood and types of runs and the deposit contract are completely endogenous and affected by the presence of
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the deposit insurance. The analysis sheds light on the tradeoff generated by the introduction of government

guarantees and offers insights for future research. One potentially interesting extension would be the analysis

of the feedback effect between government guarantees and financial stability. When the introduction of a

guarantee scheme entails an actual disbursement for the government, it can threaten the solvency of the

country and thus undermines the credibility of the guarantees themselves. The threat of sovereign default

represents a new source of risk that has been completely overlooked in the literature on government inter-

vention so far, but, as the recent European sovereign crisis has shown, it is a very relevant drawback of the

massive government intervention which took place during the crisis.

Another possible extension would be removing the assumption of full commitment so that the government

only intervenes if it is ex post optimal. The credibility of the intervention will then be conditional on its

ex post optimality which endogenously depends on the features of the guarantee introduced. There is a

growing literature analyzing different form of interventions in a context of limited commitment (e.g., Ennis

and Keister, 2009 and 2010 and Cooper and Kempf, 2011), but all those contributions consider an exogenous

probability of runs.

A Proofs

Proof of Lemma 1: The proof follows Goldstein and Pauzner (2005). The arguments in their proof

establish that there is a unique equilibrium in which depositors run if and only if the signal they receive is

below a common signal x∗(c1). The number n of depositors withdrawing at date 1 is equal to the probability

of receiving a signal xi below x∗(c1) and, given that the posterior distribution of θ is uniform over the interval

[x∗(c1)− ε, x∗(c1) + ε], it is given by:

n(θ, x∗(c1)) =


1 if θ ≤ x∗(c1)− ε

λ+ (1− λ)
(
x∗(c1)−θ+ε

2ε

)
if x∗(c1)− ε ≤ θ ≤ x∗(c1) + ε

λ if θ ≥ x∗(c1) + ε
(19)

The posterior distribution of n is uniform over the range [λ, 1]. When θ is below x∗(c1) − ε, all patient
depositors receive a signal below x∗(c1) and run. When θ is above x∗(c1) + ε, all late depositors wait until

date 2 and only the λ early consumers withdraw early. In the intermediate interval, when θ is between

x∗(c1) − ε and x∗(c1) + ε, there is a partial run as some of the late depositors run. The proportion of late

consumers withdrawing decreases linearly with θ as fewer agents observe a signal below the threshold.

Having characterized the proportion of agents withdrawing for any possible value of the fundamentals θ,

we can now compute the threshold signal x∗(c1). A patient depositor who receives the signal x∗(c1) must

be indifferent between withdrawing at date 1 and at date 2. The threshold x∗(c1) can be then found as the

solution to

f(θ, c1) =

∫ 1
c1

n=λ

[
p(θ(n))u(

1− nc1
1− n R)− u(c1)

]
+

∫ 1

n= 1
c1

[
u(0)− u( 1

n
)

]
= 0, (20)
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where, from (19), θ(n) = x∗(c1) + ε − 2ε (n−λ)1−λ . Equation (20) follows from (3) and requires that a late

depositor’s expected utility when he withdraws at date 1 is equal to that when he waits till date 2. Note

that at the limit, when ε→ 0, θ(n)→ x∗(c1), and we denote it as θ
∗(c1). Solving (20) with respect to θ

∗(c1)

gives the threshold as in the proposition.

To prove that θ∗(c1) is increasing in c1, we use the implicit function theorem and obtain

∂θ∗(c1)

∂c1
= −

∂f(θ∗,c1)
∂c1

∂f(θ∗,c1)
∂θ∗

.

It is easy to see that ∂f(θ
∗,c1)
∂θ > 0. Thus, the sign of ∂θ

∗(c1)
∂c1

is given by the opposite sign of ∂f(θ
∗,c1)

∂c1
, where

∂f(θ∗, c1)

∂c1
= − 1

c21

[
p(θ∗)u(

1− 1
c1
c1

1− 1
c1

R)− u(c1)
]
+
1

c21
[0− u(c1)]−

∫ 1
c1

n=λ

[
p(θ∗)

(
nR

1− n

)
u′(
1− nc1
1− n R) + u′(c1)

]
=

= −
∫ 1

c1

n=λ

[
p(θ∗)

(
nR

1− n

)
u′(
1− nc1
1− n R) + u′(c1)

]
< 0.

This implies ∂θ
∗(c1)
∂c1

> 0. �

Proof of Proposition 1: Differentiating (5) with respect to c1 gives the optimal deposit contract cD1 as

the solution to (6).

To show that cD1 > 1, we evaluate (6) at c1 = 1. From (4), at c1 = 1 the threshold θ
∗(c1) simplifies to

θ∗(1) = p−1
(1− λ)u(1)
(1− λ)u(R) ,

and, from (2), it is then

θ∗(1) = θ(1).

Thus, when c1 = 1, (6) can be rewritten as follows:

λ

∫ 1

θ(1)

[u′(1)− p(θ)Ru′(R)]− ∂θ(c1)

c1
|c1=1(1− λ) [p(θ(1)u(R)− u(1))]

The second term is equal to zero because of the definition of θ(c1) in (2), and thus the expression simplifies

to

λ

∫ 1

θ(1)

[u′(1)− p(θ)Ru′(R)] .

Since the relative risk aversion coeffi cient is bigger than 1, it holds

1 · u′(1) > Ru′(R),

so that λ
∫ 1
θ(1)

[u′(1)− p(θ)Ru′(R)] > 0 and thus cD1 > 1. �

Proof of Lemma 2: The proof is analogous to the one of Lemma 1 with the difference that now we

have to compute two equilibrium thresholds depending on the value of α relatively to n∗. In both cases (i.e.

α ≶ n∗), a patient depositor who receives the signal x∗(c1) must be indifferent between withdrawing at date
1 and at date 2.
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We start from the case α 6 n∗. The threshold x∗1(c1, α) can be then found as the solution to

f1(θ, c1, α) =

∫ α

n=λ

[
p(θ(n))u(

1− nc1
1− n R)− u(c1)

]
+

∫ 1

n=α

[
p(θ(n))u(

1− αc1
1− α R)− u(c1)

]
= 0, (21)

where, similarly to (19), θ(n) = x∗1(c1, α) + ε− 2ε (n−λ)1−λ . Equation (21) follows from (8) and requires that a

late depositor’s expected utility when he withdraws at date 1 is equal to that when he waits till date 2. At

the limit, when ε→ 0, θ(n)→ x∗1(c1, α), and we denote it as θ
∗
1(c1, α). Solving (21) with respect to θ

∗
1(c1, α)

gives the threshold as in the proposition.

We now consider the case α > n∗ . Using the same arguments as above, the threshold x∗2(c1, α) is the

solution to

f2(θ, c1, α) =

∫ 1
c1

n=λ

[
p(θ(n))u(

1− nc1
1− n R)− u(c1)

]
+

∫ α

n= 1
c1

[
u(0)− u( 1

n
)

]
+

∫ 1

n=α

[
u(0)− u( 1

α
)

]
=

=

∫ 1
c1

n=λ

[
p(θ(n))u(

1− nc1
1− n R)− u(c1)

]
−
∫ α

n= 1
c1

u(
1

n
)−

∫ 1

n=α

u(
1

α
) = 0. (22)

Thus, at the limit when ε→ 0, we denote as θ∗2(c1, α) the solution to (22).

To prove that θ∗1(c1, α) and θ
∗
2(c1, α) are increasing in c1, we use the implicit function theorem and obtain

∂θ∗i (c1, α)

∂c1
= −

∂fi(θ
∗
i ,c1,α)
∂c1

∂fi(θ∗i ,c1,α)
∂θ∗i

with i = 1, 2 .

It is easy to see that ∂fi(θ
∗
i ,c1,α)
∂θ∗i

> 0 for any i = 1, 2. Thus, the sign of ∂θ
∗
i (c1,α)
∂c1

is given by the opposite

sign of ∂fi(θ
∗
i ,c1,α)
∂c1

.

For θ∗1(c1, α), we have

∂f1(θ
∗
1, c1, α)

∂c1
= −

∫ α

n=λ

p(θ∗1)

(
nR

1− n

)
u′(
1− nc1
1− n R)+

−
∫ 1

n=α

p(θ∗1)

(
αR

1− α

)
u′(
1− αc1
1− α R)−

∫ 1

n=λ

u′(c1) < 0.

This implies ∂θ
∗
1(c1,α)
∂c1

> 0.

For θ∗2(c1, α), we have

∂f2(θ
∗
2, c1, α)

∂c1
= −

∫ 1
c1

n=λ

[
p(θ∗2)

(
nR

1− n

)
u′(R

1− nc1
1− n ) + u′(c1)

]
< 0.

This implies ∂θ
∗
2(c1,α)
∂c1

> 0.

To prove that θ∗1(c1, α) is increasing in α while θ
∗
2(c1, α) is decreasing in α, we use again the implicit

function theorem and obtain
∂θ∗i (c1, α)

∂α
= −

∂fi(θ
∗
i ,c1,α)
∂α

∂fi(θ∗i ,c1,α)
∂θ∗i
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with i = 1, 2 .

Being ∂fi(θ
∗
i ,c1,α)
∂θ∗i

> 0 for any i = 1, 2, the sign of ∂θ
∗
i (c1,α)
∂α is given by the opposite sign of ∂fi(θ

∗
i ,c1,α)
∂α .

For θ∗1(c1, α), we have

∂f1(θ
∗
1, c1, α)

∂α
= −

∫ 1

n=α

p(θ∗1)
(c1 − 1)
(1− α)2

Ru′(
1− αc1
1− α R) < 0.

This implies ∂θ
∗
1(c1,α)
∂α > 0.

For θ∗2(c1, α), we have

∂f2(θ
∗
2, c1, α)

∂α
= −u( 1

α
) + u(

1

α
) +

1

α2

∫ 1

n=α

u′(
1

α
) =

1

α2

∫ 1

n=α

u′(
1

α
) > 0.

This implies ∂θ
∗
2(c1,α)
∂α < 0.

Thus, the lemma follows.�

Proof of Proposition 2: Denote as c11 and c12 the maximum level of consumption that the bank can

choose. The two upper bounds are defined by the following equations, respectively

lim
c1→c11

θ∗1(c1, α) = θ (23)

and

lim
c1→c12

θ∗2(c1, α) = θ. (24)

As θ∗1(c1, α) is increasing in c1 and α, c11 is decreasing in α. On the contrary, given that θ
∗
2(c1, α) is

increasing in c1 but decreasing in α, c12 is increasing in α.

Consider first the case α ≤ n∗. Differentiating (13) with the respect to c1 gives∫ θ∗1(c1,α)

0

u′ (c1) dθ + λ

∫ 1

θ∗1(c1,α)

[
u′(c1)−Rp(θ)u′

(
1− λc1
1− λ R

)]
dθ + (25)

−∂θ
∗
1(c1, α)

∂c1
(1− λ)

[
p(θ∗1(c1, α))u

(
1− λc1
1− λ R

)
− u(c1)

]
= 0.

When α = λ, (25) simplifies to∫ θ(c1)

0

u′ (c1) dθ + λ

∫ 1

θ(c1)

[
u′(c1)−Rp(θ)u′

(
1− λc1
1− λ R

)]
dθ.

Evaluating the expression above at c1 → c11(λ) and given that θ → 1, it simplifies to∫ θ

0

u′ (c1) dθ > 0.

Thus, banks optimally choose c∗1 → c11 and runs occur in the range
[
0, θ
]
.

Now we turn to the interval α > n∗. Differentiating (13) with the respect to c1 gives

λ

∫ 1

θ∗2(c1,α)

[
u′(c1)−Rp(θ)u′

(
1− λc1
1− λ R

)]
dθ + (26)

−∂θ
∗
2(c1, α)

∂c1

[
(1− λ) p(θ∗2(c1, α))u

(
1− λc1
1− λ R

)
+ λu(c1)− u

(
1

α

)]
= 0.
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At α = 1, bank’s problem is the same as the problem of a bank in the decentralized economy without

government intervention. As shown in Proposition 1, c1D ≡ c∗1 > 1. It is easy to show that in this case,

c∗1 < c12(1) as (26), evaluated at the limit for c1 → c12(1) and θ → 1, simplifies to

lim−
c1→c12(1)

∂θ∗2(c1, α)

∂c1

[
(1− λ) p(θ∗2(c1, α))u

(
1− λc1
1− λ R

)
+ λu(c1)− u

(
1

α

)]
and it is negative as ∂θ

∗
2(c1,α)
∂c1

> 0 and lim
c1→c12(1)

p(θ∗2(c1, α)) = p(θ) = 1 and c12 > 1
α . Thus, the proposition

follows.�
Proof of Proposition 3: Denote as g the amount of public good for which the government optimally

chooses α∗ = λ. From the proof of Proposition 2, when α = λ it is the case that banks choose a corner

solution c∗1 → c11(λ) and θ
∗
1(c11(λ))→ θ. In this case, depositors’expected utility is given by∫ θ

0

u(c11(α))dθ+

∫ 1

θ

[
λu(c11(α)) + (1− λ)u

(
1− λc11(α)
1− λ R

)]
dθ+

∫ θ

0

v(g−c11(α)+1)dθ+
∫ 1

θ

v(g)dθ. (27)

Differentiating (27) with respect to α and considering the limit where θ approaches to 1, α∗ = λ is the

solution to ∫ θ

0

u′(c11(α))dθ −
∫ θ

0

v′(g − c11(α) + 1)dθ = 0. (28)

Consider now g < g. Given the concavity of v′(.), a decrease in the amount of public good available in

the economy implies that the term
∫ θ
0
v′(g− c11(α)+1)dθ in (28) becomes larger. Given that both u′′(.) < 0

and ∂c11(α)
∂α < 0 from the proof of Proposition 2, it must be that α > λ for (28) to be satisfied with equality

when g < g. Thus, the proposition follows.�
Proof of Proposition 4: Differentiating (14) with respect to α gives

−∂θ
∗
1(c1, α)

∂α

[
p(θ∗1(c1, α))u(

1− λc1
1− λ R)− u(c1)

]
(1− λ)+

−∂θ
∗
1(c1, α)

∂α
[v(g)− v(g − c1 + 1)] < 0

as ∂θ
∗
1(c1,α)
∂α > 0. This implies that the government chooses α = λ. Consider now the choice of c1.

Suppose first that (15) is not binding. For α = λ, the threshold θ∗1(c1, α) is equal to θ(c1).Then, the first

order condition with respect to c1 is equal to∫ θ(c1)

0

u′ (c1) dθ + λ

∫ 1

θ(c1)

[u′(c1)− p(θ)Ru′ (c2λ)] dθ +

−∂θ(c1)
∂c1

(1− λ) [p (θ(c1))u (c2λ)− u(c1)]−
∂θ(c1)

∂c1
[v(g)− v (g − (c1 − 1))] +

−
∫ θ(c1)

0

v′(g − (c1 − 1))dθ = 0. (29)

From the definition of θ(c1) in (2), the term
∂θ(c1)
∂c1

(1 − λ) [p (θ(c1))u (c2λ)− u(c1)] is equal to zero and the
expression above simplifies to (16) as in the proposition.

To see when the constraint (15) is binding, we substitute c1 = g + 1 in (16) and obtain
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∫ θ(g+1)

0

u′(g + 1)dθ + λ

∫ 1

θ(g+1)

[
u′(g + 1)− p(θ)Ru′

(
1− λ(g + 1)

1− λ R

)]
dθ +

−∂θ(c1)
∂c1

|c1=g+1v(g)−
∫ θ(g+1)

0

v′(0)dθ. (30)

Denote as gG the amount of public good for which (30) is equal to zero. Given the concavity of the

function (14), (30) is negative for g > gG and positive for g < gG. This implies that the constraint (15) is

not binding for g > gG, while it is for g < gG.

The proposition follows. �

Proof of Proposition 5: Differentiating (17) with respect to c1 gives cDI1 as the solution to (18) and

the proposition follows. �
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TABLE 1

g α
c1
c2

E [u (c1, c2)]
E[v(g)]

[SW (c1, c2, g)]
θ
θ∗

g = 1.55 Decentralized
economy

1 1.0076
4.98372

0.0139512
0.0150176

0.0289377 0.451436
0.463162

Economy
with transfers

0.95 1.05133
4.89001

0.01409
0.0148694

0.0289594 0.467607
0.486561

g = 2 Decentralized
economy

1 1.0076
4.98372

0.0139202
0.0173611

0.0312813 0.451436
0.463162

Economy
with transfers

0.8946 1.09951
3.37316

0.0142449
0.0170879

0.0313328 0.485305
0.578313

g = 2.5 Decentralized
economy

1 1.0076
4.98372

0.0139202
0.0194157

0.333359 0.451436
0.463162

Economy
with transfers

0.7 1.2936
4.10101

0.0148707
0.0186018

0.0334725 0.555976
0.710063

31



TABLE 2 : (g = 1.55)

α

[
c1
c2

] [
E [u (c1, c2)]
E[v(g)]

]
[SW (c1, c2, g)]

[
θ
θ∗

]
Limiting

moral hazard
λ 1.20096

4.56937
0.0147178
0.0143685

0.0290863 0.522304
None

Eliminating
all runs

None 2.17671
2.47848

0.0185618
0.00771226

0.0262741 None
None
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TABLE 3 : (g = 2)

α

[
c1
c2

] [
E [u (c1, c2)]
E[v(g)]

]
[SW (c1, c2, g)]

[
θ
θ∗

]
Limiting

moral hazard
λ 1.32918

4.29462
0.0152042
0.0164171

0.0316213 0.56893
None

Eliminating
all runs

None 2.17671
2.47848

0.0185618
0.0118288

0.0303906 None
None
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The

TABLE 4 : (g = 2.5)

α

[
c1
c2

] [
E [u (c1, c2)]
E[v(g)]

]
[SW (c1, c2, g)]

[
θ
θ∗

]
Limiting

moral hazard
λ 1.47692

3.97802
0.0157435
0.0182013

0.0339448 0.623291
None

Eliminating
all runs

None 2.17671
2.47848

0.0185618
0.0152374

0.0337992 None
None
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Figure 1: The figure shows how the optimal size of intervention α varies with the amount of public resources
g available in the economy and its effects on the likelihood of runs and optimal deposit contract. When g is
small, the government chooses a high α in order to limit the moral hazard problem on the side of the banks.
As a consequence, banks choose a low c1 and in turn the probability of runs is small. As g increases, the
government chooses a lower α and, banks a more generous deposit contract c1. In turn, the higher c1 implies
that runs are more likely.
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Figure 2: The figure shows the comparison of social welfare across the various forms of intervention for
different values of g. The scheme in which the government chooses both the size of the intervention and the
deposit contract (denoted as G) is the optimal one for any possible value of g. Comparing the interventions
in which the government cannot control the choice of c1, the scheme in which the government chooses the size
of the intervention α (denoted as α) represents an improvement upon the decentralized solution (denoted as
D) for any possible value of g. However, it is preferable to the intervention in which all runs are prevented
(denoted as DI) only when g is not too high. When g = 2.5, the guarantee scheme eliminating all runs
represents the best form of intervention if the governement cannot control the choice of the deposit contract
c1.
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