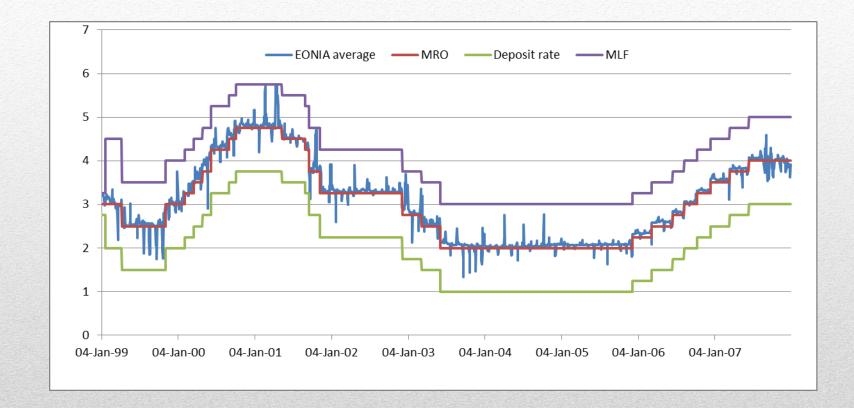


Implementing monetary policy post-crisis: What have we learned? What do we need to know?

Organized by Columbia University SIPA and the Federal Reserve Bank of New York May 4, 2016

How should central banks steer money market interest rates?

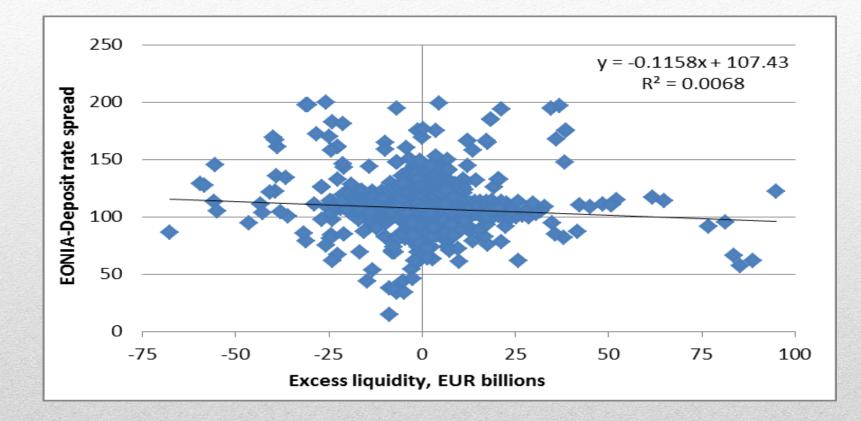
Francesco Papadia*


*This presentation represents work in progress. The section on derivative control of interest rate is joint work with Juliusz Jablecki Prepared with the assistance of Madalina Norocea and Piero Esposito

The past

2

• Pre-August 2007


The ECB corridor before the crisis

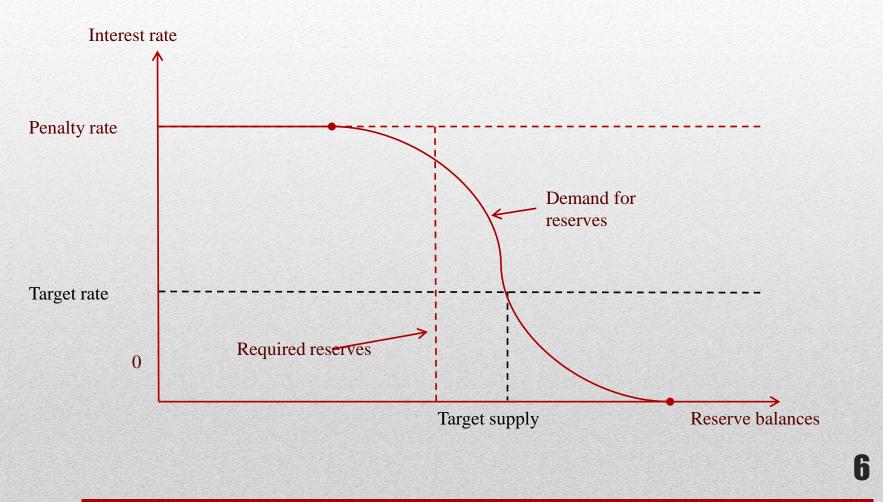
3

• O/N rate in the middle of the corridor

Excess of liquidity and spreads before the crisis

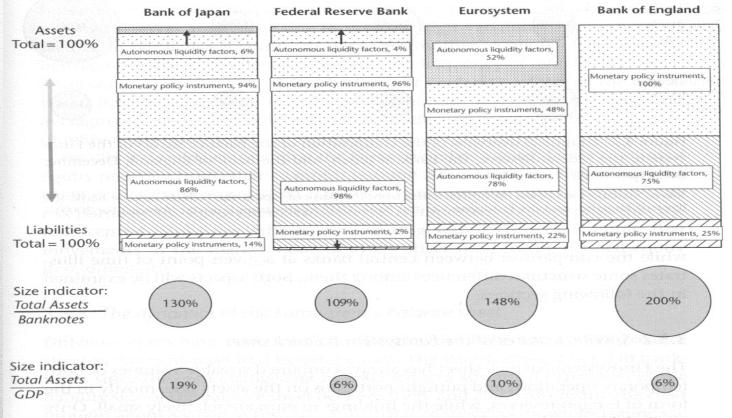
Δ

Excess liquidity and spread O/N MRO rate around zero


Interest rates within a corridor system

$r^t = E_t(r^T) = P_l R^l + P_s R^s$

Where


- r^t is the market interest rate on day t
- r^{T} is the interest rate at the end of the maintenance period
- E^t is the expectation operator based on information available on day t
- R^{l} is the rate applying when banks are long on liquidity and depositing it with the ECB
- P_l is the probability of banks being long on liquidity at the end of the maintenance period
- R^{s} is the rate when banks are short of liquidity and borrowing from the ECB
- P_s is the probability of banks being short on liquidity at the end of the maintenance period.

Monetary policy implementation in the United States*

*Todd Keister, Antoine Martin, and James McAndrews

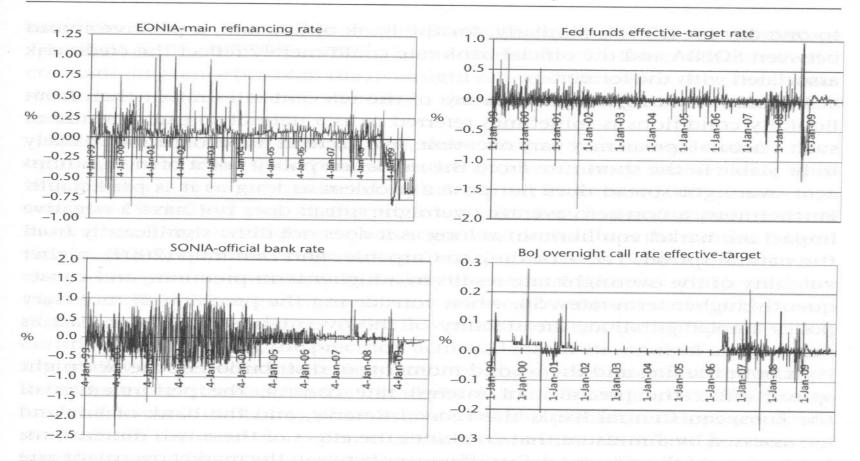
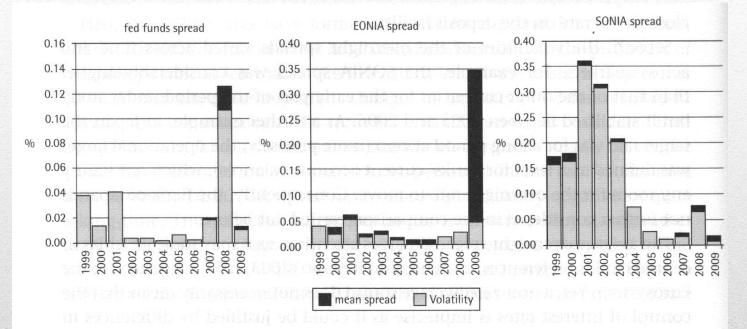

Central banks balance sheets broad vs. narrow frameworks

Figure 3.1: Graphical overview of the composition of the balance sheets of the Eurosystem, the Federal Reserve, the Bank of Japan, and the Bank of England, June 2007 (per cent)

Source: Calculations based on official series from the Bank of Japan, the Federal Reserve Bank, the Bank of England, and the European Central Bank. GDP figures from Eurostat.

Precision in interest rate control I



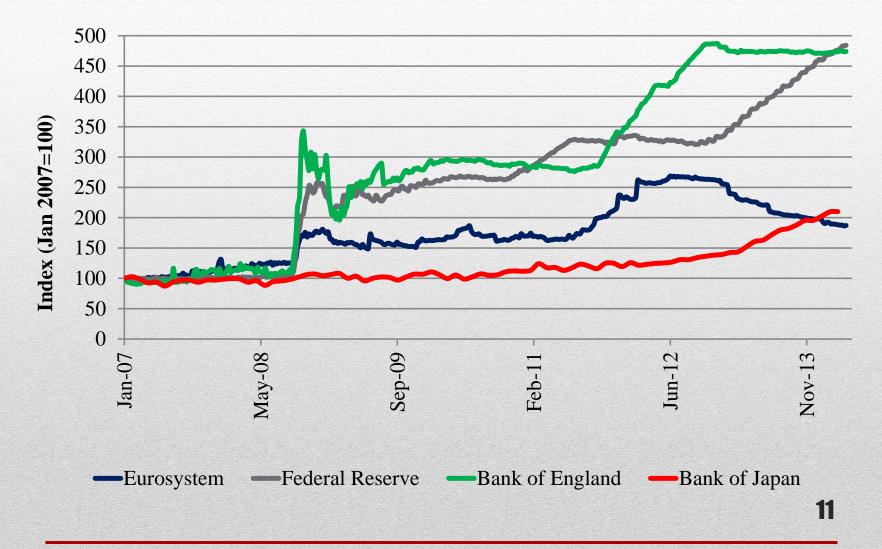
Functioning of the Eurosystem framework since 1999

Figure 3.15: The overnight spreads, 1999–2009 (per cent)

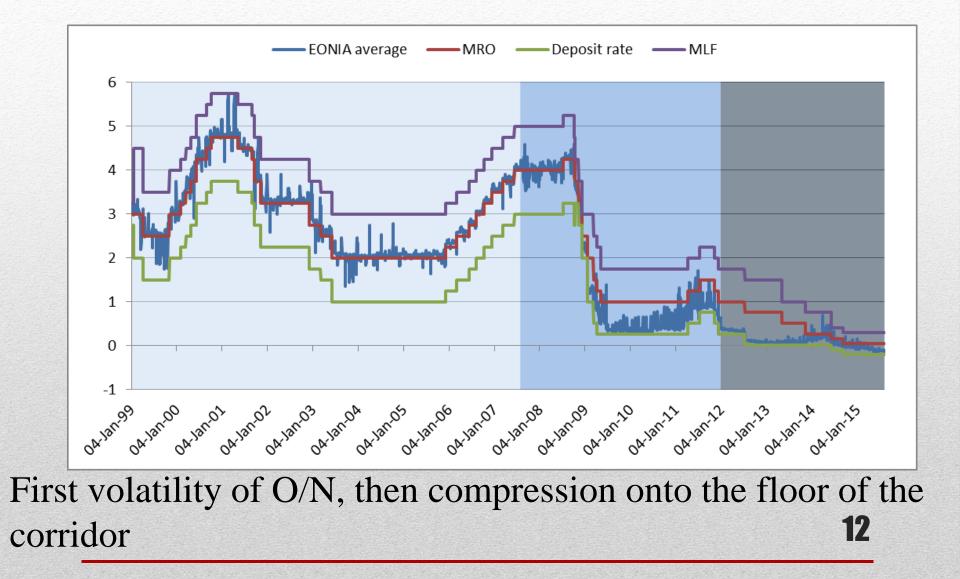
Sources: European Central Bank, Federal Reserve, Bank of England, Bank of Japan, and authors' calculations.

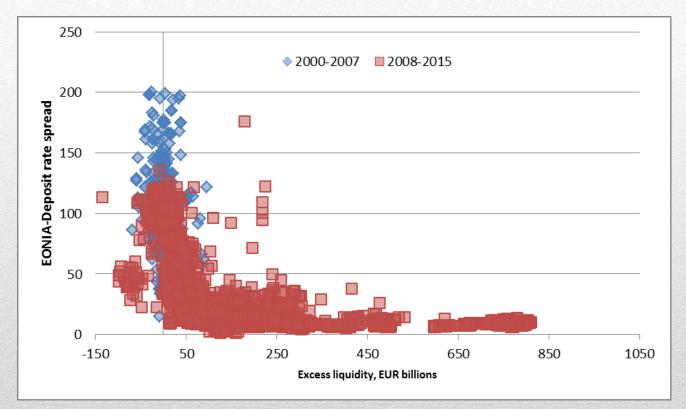
Precision in interest rate control II

Figure 3.16: Precision in interest rate control (average squared differences between daily overnight and policy rates), 1999–2009 (per cent) *Sources*: European Central Bank, Federal Reserve, Bank of England, and authors' calculations.


• US and €-area with comparable precision, Japan more precise, UK less.

The Present

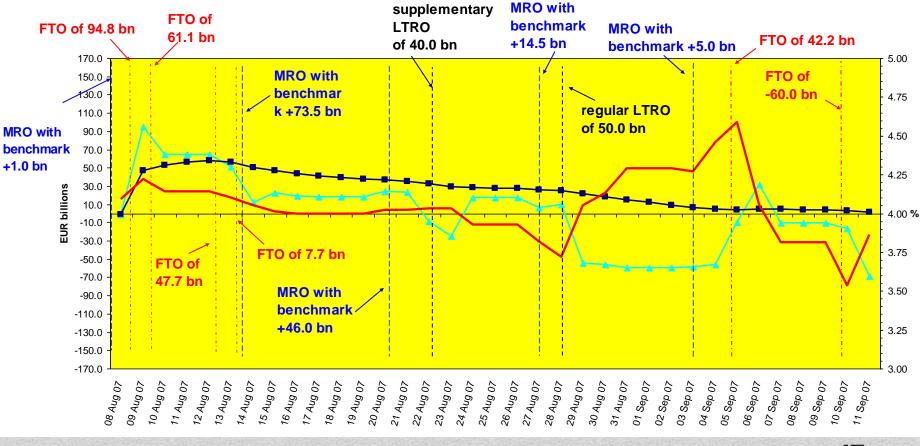

• After August 2007


Central bank balance sheets

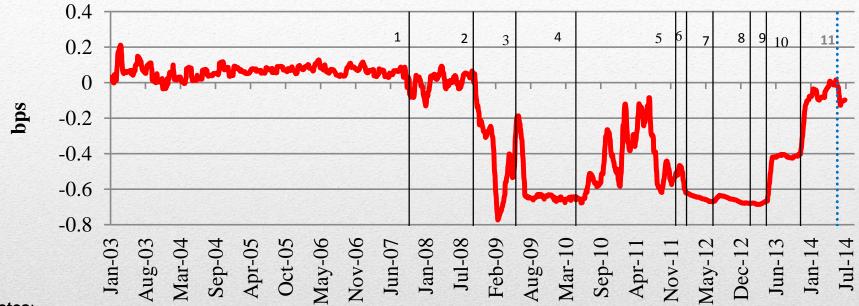
The ECB corridor after the crisis

Excess of liquidity after the crisis

• Huge amount of liquidity pushing O/N to the bottom of the corridor

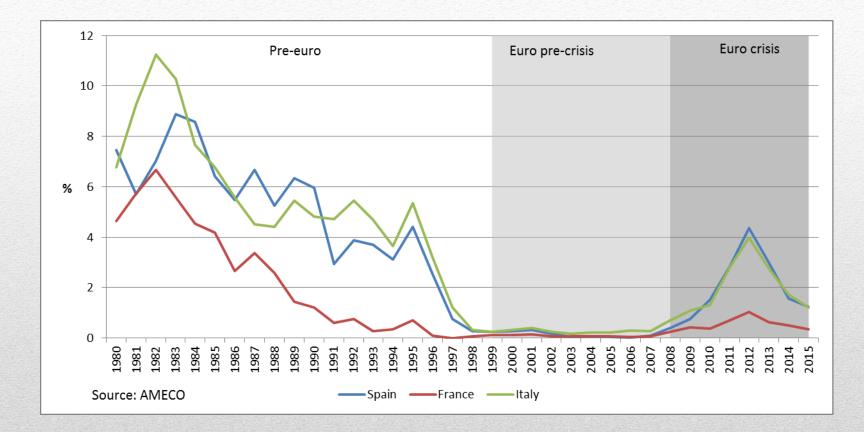

Fundamental equation: special case

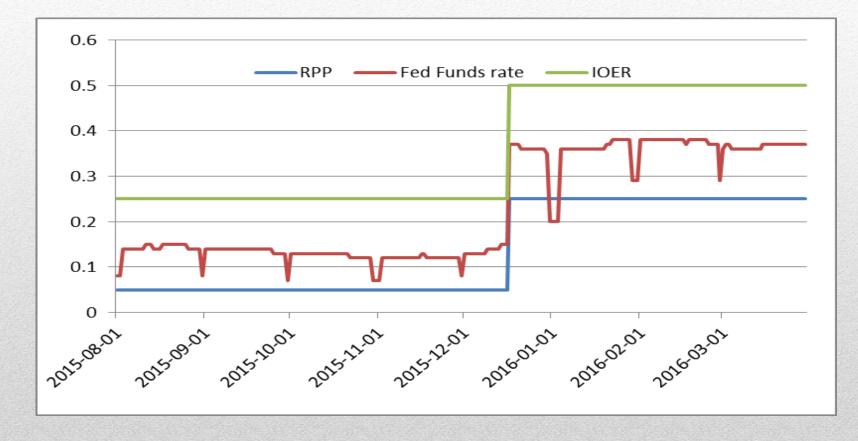
$r^t = E_t(r^T) = P_l R^l + P_s R^s$


$r^t = E_t(r^T) = R^l$

Maintenance period 8 August – 11 September 2007

---- Daily reserve surplus/deficit (left-hand scale) ---- Average daily reserve surplus (left-hand scale) ----- EONIA (right-hand scale)

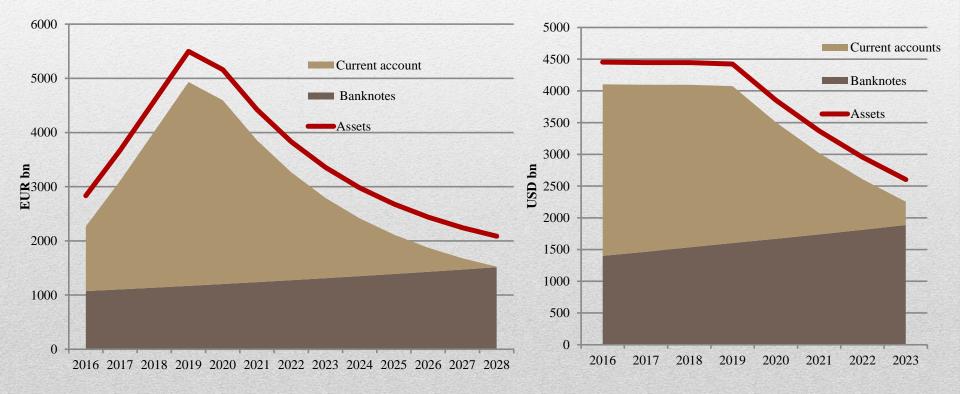

EONIA-MRO spread


Notes:

- (1) Lehman Brothers Collapse; Injection of liquidity via fine tuning operations
- (2) Narrowing of the corridor & Full allotment at fixed rate
- (3) 1st 1 year LTRO
- (4) Start of SMP
- (5) & (6)The 3 year LTROs
- (7) Deposit rate cut to 0
- (8) Start of 3 yr LTROs early repayment
- (9) MRO rate cut
- (10) MRO rate cut to 0.25
- (11) Negative deposit rate

Spread between peripheral and German 10y bonds

The new FED corridor approach


Corridor between two absorbing facilities

And what about the future?

- Just continue like now
- Get back to old symmetric corridor
- Derivative-based interest rate control

Just continue like now

Long term balance sheet extrapolations ECB (lhs); FED (rhs)

Get back to old symmetric corridor

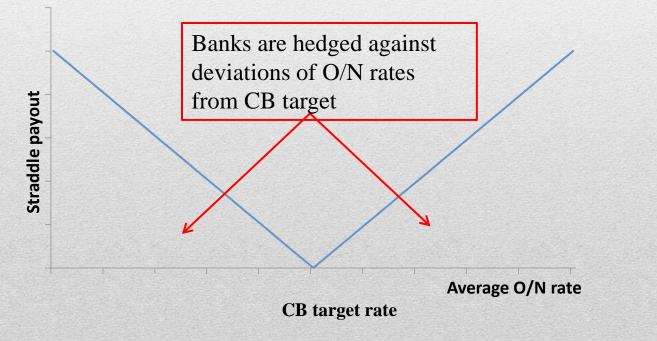
Liquidity control through OMOs

No ex-ante excess liquidity

Stabilizing required reserves

Narrow or broad framework? In the US? In the €-area?

Derivative-based interest rate control I prepared with Juliusz Jablecki


- Symmetric corridor
- Rigid demand for liquidity
- Stabilizing device needed
 - Daily OMOs
 - Draw from reserves required on average during maintenance period
 - Draw from target rate facility (Taralac)
 - Compensate P/L effect through a straddle

Derivative-based interest rate control II

- In a **Wicksellian approach** the central bank wants to control the interest rates, with quantities only a tool. Why not concentrating on the variable of interest rather than on the tool?
- Liquidity: turnover in contracts on € interest rates is twice as high as that in cash market (both secured and unsecured);
- **Price origination**: anecdotal evidence suggests pricing increasingly originates in the derivative market (e.g bond futures);
- Lower transactions costs: a 3M € unsecured deposit trades at ca. 15bp bid-ask spread vs. only 2-5bp on 3M OIS;
- Lower credit risk: collateralization and netting arrangements would allow limiting credit exposure.

Derivative-based interest rate control III

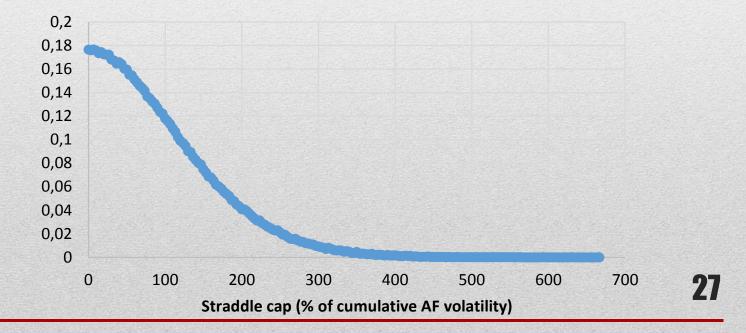
- CB offers protection against O/N volatility with a **straddle**, a combination of a payer and receiver option with a strike equal to the CB target rate
- The writing of straddle contracts complements normal liquidity provision based on a given forecast of autonomous factors
- The payout of the straddle is 0 if the O/N rate stabilizes exactly at the CB target rate and increases linearly with deviations from the strike

Derivative-based interest rate control IV

A straddle because:

- Banks have symmetric exposure to O/N rate deviations from target if OMO covers expected shocks
- A swap would only give one sided protection
- Straddles are traded e.g. on 3M EURIBOR futures

EDZ6 Comdty	95) A	ctions 💌	97) Set	tings 📼				Option N	lonitor	
	UTR Dec 99.155	015015		0 / 99.155	Hi 99.:			Volm 66741	HV .52	
Center 99.155		oct-16 on El	26 ·	🥖 Related	Products	EDA Com	dty	•	~	Sector Sector Sector
Calc Mode 81) Center Strik		34:06 🗘 83 Calls	14 Dute	10 Term Str	unhura	80 Straddl			49	EURIBOR
OptContract			MISHABIA	StrdAsk Str IV	tStrd tS			rd 1DNt StrdIV 1DN	E CallBid C	
1) May-16	05/13/16 99.32	99.38 .0		.0750 36 31	.0652	29.19 .0650		8,81		future
2) Jun-16	06/13/16 99.32	99.38 .0		.0850 30 09	.0774	29.16 .0800		41		straddles
3) Jul-16	07/15/16 99.23	99.25 .1	40 .1300	.1500 47 22	.1334 4	44.96 .1400	47.15	.07		stradules
4) Aug-16	08/12/16 99.23	99.25 .1	60 .1500	.1700 46 92	.1537	45.06 .1600	47.03		.0650.0	are liquid
5) Sep-16	09/19/16 99.23	99.25 .1	7 5 .1700	.1850 45 25	1685	42.92	44.72	.53	.0750.0	
6) Oct-16	10/14/16 99.15	99.13		51	2364	49.42 .2400		1.03		and trade
J) Dec-16	12/19/16 99.15	99.13 .2		.2800 48 33	.2598 4	46.55 .2700		20		Standard - Alexandra and Alexandra
6) Mar-17	03/13/17 99.11	99.13 .3		.3750 55 79	.3629	55.08 .3700		-1.03		at narrow
9) Jun-17	06/19/17 99.05	99.4		.4800 56 92	.4660	56.53 .4700		-,4	3 .2550.2	
> 10) Sep-17	09/18/17 98.99	99.5		.5850 61 92	.5687	61.49 .5700		4		bid-ask
11) Dec-17	12/18/17 98.93	98.88 .6		.6850 61 34	.6671	61.01 .6750		5		h a numera d
12) Mar-18 13) Jun-18	03/19/18 98.88 06/18/18 98.82	98.88 .7 98.88 .8		.7900 64 95 .8950 67 80	.7604	64.09 .7700 68.61 .8750		73		spread
10 Sep-18	09/17/18 98.76	98.88 .8 98.75 .9		.9900 66 54	.9662	66.59 9650	67.18	- 1,44	4 .4000 .4 4 .4750 .5	
10 Seb. 10	0771710 00110	70.10 .7			.9002		01.10	-10-		


Derivative-based interest rate control V

- CB balances liquidity conditions with OMO & offers banks a straddle with strike equal to target rate
- Trading sessions take place and liquidity shocks materialize
- If the banking system has a net liquidity shortfall/surplus, recourse will be taken to the borrowing/deposit standing facility
 - All or part of the cost of taking recourse to either of the standing facilities can be recovered.

Derivative-based interest rate control VI

- With a free of charge and limitless straddle, interest rates would be pegged at target.
- A capped straddle will not eliminate interest rate volatility fully and will leave some space for interbank market functioning
- A cap calibrated to 200% of cumulative variance of daily liquidity shocks reduces O/N volatility by a factor of 4.5

O/N rate volatility

Derivative-based interest rate control VII

- Isolate from effects of LCR as interest rate control is separate from liquidity supply/demand?
- Derivatives-based monetary policy implementation vs. TARALAC facility
- How to apportion the straddle to individual banks?
- Should the straddle be offered free of charge?
- How would a straddle-based approach influence money market activity?
- What about using fixed-floating swaps?

Thank you! ...and some publicity

My Blog: Money matters? Perspectives on Monetary Policy

My Tweet: @FrancescoPapad1