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Abstract
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and wage dynamic general equilibrium model of the US economy. The model is used

to generate estimates of the paths of a number of latent variables that are generally

considered to be central to monetary policy formulation—specifically, the output gap

and the natural rate of interest. After establishing that these measures “look sensible,”

the paper examines the usefulness of these measures for the conduct of monetary policy.
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1 Introduction

This paper develops and estimates using Bayesian techniques a dynamic general equilibrium

model of the US economy. The model is used to generate estimates of the paths of a

number of latent variables that are generally considered to be central to monetary policy

formulation—specifically, the output gap and the natural rate of interest. After establishing

that these measures “look sensible,” the paper examines the usefulness of these measures

for the conduct of monetary policy.

The paper assumes a two-sector growth structure, with differential rates of technical

progress across sectors and hence persistently divergent rates of growth across the economy’s

expenditure and production aggregates. This structure is necessary for the model to be

consistent with recent macroeconomic phenomena that have seen large differences in the

real growth rates of expenditure aggregates, along with sizeable trends in relative prices.

For example, the real growth rate of gross private domestic investment over the last 25 years

(1980q1 to 2004q4) has averaged around 5-1/4 percent, while real consumption growth has

been averaging about 3-1/4 percent. Over this time the relative price of investment to

consumption goods has declined about 1-1/2 percent per year.

The single-sector model structure, which appears to still be the most widely used set-up

for DSGE models of the US economy, is unable to deliver predictions for long-term growth

and relative price movements that are consistent with the above-mentioned stylized facts.

Specifically, one-sector growth models, such as those that form the neoclassical-core of the

models developed by Smets and Wouters (2004) and Altig, Christiano, Eichenbaum, and

Linde (2004) imply that all non-stationary real variables grow at the same rate, so that over

long periods of time the “great ratios” are evident in the data. Unfortunately, while this

property was present in the 1988 dataset used by King, Plosser, Stock, and Watson (1991)

in their “Stochastic Trends and Economic Fluctuation” paper it has in more recent decades

failed to hold.

Single sector models also imply that there is only one price in the economy. For many

reasons, we might want to avoid this assumption. First, even in the absense of divergent

rates of technical progress across sectors, policymakers may be interested in knowing about

more than one price index. One reason for this—relevant for the conduct of policy—is that

different price indices sometimes have different degrees of price-stickiness. In the multi-

sector growth set-up modeling different price indices is even more crucial. Assuming a
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single price index in an economy with different price levels implies the mis-measurement of

all but one real variable. In an economy like the US in which inflation rates for expenditure

categories (constructed using similar index number formulae) have diverged by as much as

they have for as long as they have, the magnitude of this mis-measurements can become

considerable, especially when looking at time periods away from the base-year.

All of this leads us to adopt a model with multiple outputs (in this case two) with

different rates of technological progress. Taking account the evolution of the economy’s

steady-state path is, we believe, very important in model estimation, since the correct at-

tribution of movements in macroeconomic time series to either trend movements in the data

or business cycle fluctuations is vital to obtaining reliable estimates for the deep structural

parameters of a model (and indeed the sequence of shocks underlying the data). The pre-

cise two-sector structure that we employ is based on the observation by Whelan (2001) that

while real growth rates differ considerably across expenditure categories, nominal growth

rates are more similar. For example, nominal consumption growth has averaged about 6-

3/4 percent over the last quarter century while nominal gross private domestic investment

growth has averaged around 7 percent. This implies that while the “great ratios” in real

terms no longer hold in the data their nominal counterparts do. The type of two-sector

model that delivers this long-term prediciton is one in which production in each sector of

the economy is characterized by a Cobb-Douglas production function in labor, capital, and

technology, where the technology processes differs between the economy’s two sectors and

have divergent trend growth rates. This model is the core-neoclassical growth model that

underlies the model with real and nominal rigidities outlined in section 2 through 4 of the

paper. When this model is estimated in section 5, we allow the Kalman filter to perform

the stochastic detrending of the model and to estimate the sector’s steady-state growth

rates. The model’s properties are presented in section 6 and preliminary policy analysis is

conducted in section 7.

2 The Production and Preference Technologies

In this section we present the production and preference technologies for our two-sector

growth model. The long-run evolution of the economy is determined by differential rates

of stochastic growth in the two sectors of the economy, while its short-run dynamics are
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influenced by various forms of adjustment costs. Adjustment costs to real aggregate vari-

ables are captured by the economy’s preference and production technologies presented in

this section. Adjustment costs to real sectoral variables and nominal variables are captured

in the decentralization of the model presented in the following section.

2.1 The Production Technology

Two distinct final goods are produced in our model economy: consumption goods (de-

noted Y f,c
t ) and capital goods (denoted Y f,k

t ). These final goods are produced by aggregating—

according to a Dixit-Stiglitz technology—an infinite number of differentiated inputs. Specif-

ically, final goods production is represented by the function

Y f,s
t =

(∫ 1

0
Y f,s

t (j)
Θ

y,s
t −1

Θ
y,s
t dj

) Θ
y,s
t

Θ
y,s
t −1

, s = c, k, (1)

where the variable Y f,s
t (j) denotes the quantity of the jth input (obtained from the interme-

diate goods sector) used to produce final output s = c or s = k while Θy,s
t is the stochastic

elasticity of substitution between the differentiated intermediate goods inputs used in the

production of the consumption or capital goods sectors. Letting θy,s
t ≡ lnΘy,s

t − ln Θy,s
∗

denote the log-deviation of Θy,s
t from its steady-state value of Θy,s

∗ , we assume that

θy,s
t = ρθ,y,sθy,s

t−1 + ǫθ,y,s
t (2)

where ǫθ,y,s
t is an i.i.d. shock process, and ρθ,y,s represents the persistence of Θy,s

t away from

steady-state following a shock to equation (2).

The jth differentiated intermediate good in sector s (which is used as an input in equa-

tion 1) is produced by combining each variety of the economy’s differentiated labor inputs

{Ly,s
t (i, j)}1

i=0 with the sector’s specific capital stock Ks
t (j). A Dixit-Stiglitz aggregator

characterizes the way in which differentiated labor inputs are combined to yield a compos-

ite bundle of labor, denoted Ly,s
t (j). A Cobb-Douglas production function then characterizes

how this composite bundle of labor is used with capital to produce—given the current level

of multifactor productivity MFP s
t in the sector s—the intermediate good Y m,s

t (j). The
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production of intermediate good j is represented by the function:

Y m,s
t (j)=(Ks

t (j))
α


Am

t Zm
t As

tZ
s
t︸ ︷︷ ︸

MFP
s
t

Ly,s
t (j)




1−α

where Ly,s
t (j) =



∫ 1

0
Ly,s

t (i, j)

Θ
l,s
t −1

Θ
l,s
t di




Θ
l,s
t

Θ
l,s
t −1

s = c, k.

(3)

The parameter α in equation (3) is the elasticity of output with respect to capital while

Θl,s
t denotes the stochastic elasticity of substitution between the differentiated labor inputs.

Letting θl,s
t ≡ lnΘl,s

t − ln Θl,s
∗ denote the log-deviation of Θl,s

t from its steady-state value of

Θl
∗, we assume that

θl,s
t = ρθ,l,sθl,s

t−1 + ǫθ,l,s
t (4)

where ǫθ,l,s
t is an i.i.d. shock process, and ρθ,l,s represents the persistence of Θl,s

t away from

steady-state following a shock to equation (4).

The level of technology in sector s has four components. The Am
t and Zm

t components

represent economy-wide technology shocks, while the As
t and Zs

t terms (for s = c, k) repre-

sent technology shocks that are specific to either the consumption or capital goods sectors.

The At technology terms represent shocks that exhibit only transitory movements away

from their steady-state unit mean, while the Zt technology terms represent shocks that

exhibit permanent movements in their levels. Specifically, letting as
t ≡ lnAs

t denote the

log-deviation of As
t from its steady-state value of unity, we assume that

as
t = ρa,sas

t−1 + ǫa,s
t , s = c, k, m (5)

where ǫa,s
t is an i.i.d. shock process, and ρa,s represents the persistence of As

t away from

steady-state following a shock to equation (5). The stochastic process Zs
t evolves according

to

lnZs
t − lnZs

t−1 = lnΓz,s
t = ln (Γz,s

∗ · exp[γz,s
t ]) = lnΓz,s

∗ + γz,s
t , s = c, k, m (6)

where Γz,s
∗ and γz,s

t are the steady-state and stochastic components of Γz,s
t . The stochastic

component γz,s
t is assumed to evolve according to

γz,s
t = ρz,s,γz,s

t−1 + ǫz,s
t . (7)

where ǫz,s
t is an i.i.d shock process, and ρz,s represents the persistence of γz,s

t to a shock.

In line with historical experience, we assume a more rapid rate of technological progress in

capital goods production by calibrating the steady-state growth rate of the non-stationary
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component of technology in the capital goods sector above that in the consumption goods

sector. That is, Γz,k
∗ > Γz,c

∗ (= 1), where an asterisk on a variable denotes its steady-state

value.

2.2 Capital Stock Evolution

Purchases of the economy’s capital good can be transformed into capital that can then be

used in the production the economy’s two goods. The kth capital owner’s beginning of

period t + 1 capital stock Kt+1(k) is equal to the previous periods undepreciated capital

stock (1 − δ)Kt(k), augmented by new capital installed in the previous period It(k). We

assume that not all investment expenditure results in productive capital, since some fraction

is absorbed by adjustment costs in the process of installation. Specifically, the evolution of

the economy’s capital stock is given by

Kt+1(k) = (1 − δ)Kt(k) + It(k) −
χi

2

(
It(k)−ηiIt−1Γ

k
∗−(1 − ηi)Ĩ∗Z

m
t Zk

t

Kt

)2

Kt, (8)

where Ĩ∗ denotes the value of steady-state investment spending normalized by the permanent

component of technology so as to be constant in the steady state. Note that investment

adjustment costs are zero when It

Zm
t Zk

t
= It−1

Zm
t−1Zk

t−1
= Ĩ∗ but rise to above zero, at an in-

creasing rate, as investment growth moves further away from this. The costs for altering

investment depend on both the level of (growth-adjusted) investment spending from the

preceding period as well as the steady-state level of investment spending. The parameter

χi governs how quickly these costs increase away from the steady-state.

2.3 Preferences

The ith household derives utility from its purchases of the consumption good Ct(i) and

from the use of its leisure time, which is equal to what remains of its time endowment after

Lc
t(i) + Lk

t (i) hours of labor are used up through working. The preferences of household

i over consumption and leisure are separable, with household i’s consumption habit stock

(assumed to equal a factor h multiplied by its consumption last period Ct−1(i)) influencing

the utility it derives from current consumption. Specifically, the preferences of household i

are represented by the utility function

E0

∞∑

t=0

βt

[
Ξb

t ln(Ct(i)−hCt−1(i))−ςΞl
t

(Lu,c
t (i)+Lu,k

t (i))1+ν

1 + ν

]
. (9)

5



The parameter β is the household’s discount factor, ν denotes its labor supply elasticity,

while ς is a scale parameter. The stationary, unit-mean, stochastic variables Ξb
t and Ξl

t

represent aggregate shocks to the household’s utility of consumption and disutility of labor.

Letting ξx
t ≡ ln Ξx

t − ln Ξx
∗ denote the log-deviation of Ξx

t from its steady-state value of Ξx
∗ ,

we assume that

ξx
t = ρξ,xξx

t−1 + ǫξ,x
t , v = b, l. (10)

The variable ǫξ,x
t is an i.i.d. shock process, and ρξ,x represents the persistence of Ξx

t away

from steady-state following a shock to equation (10).

3 The Decentralized Economy

We assume the following decentralization of the economy. There is one representative,

perfectly competitive firm in each of the two final-goods producing sectors, which purchases

intermediate inputs from the continuum of intermediate goods producers. The intermediate

goods producers, in turn, rent capital from a perfectly competitive representative capital

owner, and differentiated types of labor from households. The capital owner purchase

the capital good from the (final) capital-goods producing firm, and households purchase

the consumption good from the (final) consumption-goods producing firm. Because both

intermediate goods producers and households are monopolistic competitors, they also set

the prices or wages at which they supply their respective products or labor services.

3.1 Consumption and Capital Final Goods Producers

The competitive firm in the consumption good sector owns the production technology de-

scribed in equation (1) for s = c, while the competitive firm in the capital goods sector

owns the same technology for s = k.

The final-good producing firm in sector s takes as given the prices {P s
t (j)}1

j=0 set by each

intermediate good producing firm for its differentiated output, and choose {Y m,s
t (j)}1

j=0 to

minimize its production costs subject to the aggregator function. Specifically, the final-good

producer in sector s solves the cost-minimization problem of:

min
{Y m,s

t (j)}
1

j=0

∫ 1

0
P s

t (j)Y m,s
t (j)dj subject to

(∫ 1

0
(Y s

t (j))
Θ

y,s
t −1

Θ
y,s
t dj

) Θ
y,s
t

Θ
y,s
t −1

≥ Y s
t , for s = c, k.

(11)

6



The cost-minimization problems solved by firms in the economy’s consumption and capital

goods producing sectors imply demand functions for each intermediate good that are given

by Y s
t (j) = (P s

t (j)/P s
t )−Θy,s

t Y s
t . The variable P s

t , which denotes the aggregate price level

in the final goods sector s, is defined by P s
t = (

∫ 1
0 (P s

t (j))1−Θy,s
t dj)

1

1−Θ
y,s
t .

3.2 Consumption and Capital Intermediate Goods Producers

Each intermediate-good producing firm j ∈ [0, 1] and s = c, k owns the production technol-

ogy described in equation (3). In describing the intermediate good producing firm’s problem

it is convenient to split it into three separate stages.

In the first stage of the problem firm j in sector s, taking as given the wages {W s
t (i)}1

i=0

set by each household for its variety of labor supplied to sector s, chooses {Ly,s
t (i, j)}1

i=0

to minimize the cost of attaining the aggregate labor bundle Ly,s
t (j) that it will ultimately

need for production. Specifically, the intermediate firm j solves:

min
{Ly,s

t (i,j)}
1

i=0

∫ 1

0
W s

t (i)Ly,s
t (i, j)di subject to



∫ 1

0
(Ly,s

t (i, j))

Θ
l,s
t −1

Θ
l,s
t di




Θ
l,s
t

Θ
l,s
t −1

≥ Ls
t (j), for s = c, k.

(12)

This cost-minimization problem undertaken by each intermediate good producing firm im-

plies that the demand in sector s for type i labor is Ly,s
t (i) =

∫ 1
0 Ly,s

t (i, j)dj = (W s
t (i)/W s

t )−Θl,s
t

×
∫ 1
0 Lu,s

t (j)dj where W s
t denotes the aggregate wage for labor supplied to sector s, defined

by W s
t = (

∫ 1
0 (W s

t (x))1−Θl,s
t dx)

1

1−Θ
l,s
t .

In the second stage of the problem firm j in sector s, taking as given the aggregate

sector s wage W s
t and the sector s rental rate on capital Rk,s

t , chooses aggregate labor

Ly,s
t (j) and capital Ks

t (j) to minimize the costs of attaining its desired level of output

Y s
t (j). Specifically, firm j in sector s solves

min
{Ly,s

t (j),Ks
t (j)}

W s
t Ly,s

t (j)+Rk,s
t Ks

t (j) s.t. (Am
t Zm

t As
tZ

s
t L

y,s
t (j))

1−α
(Ks

t (j))
α ≥ Y s

t (j), for s = c, k.

(13)

Since each intermediate goods firm produces its own differentiated variety of output

Y m,s
t (j), it is able to set its price P s

t (j). It does this taking into account the demand schedule

for its output that it faces from the final-goods sector s, Y s
t (j) = (P s

t (j)/P s
t )−Θy,s

t Y s
t , as

well as the adjustment costs that it faces in altering its price. These adjustment costs are

introduced to the model through the assumption that the act of altering prices absorbs
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some of the intermediate-goods producing firm’s output Y m,s
t (j), so leaving a somewhat

diminished amount, Y f,s
t (j), available to be sold as an input into final good production.

Specifically, we assume that:

Y f,s
t (j) = Y m,s

t (j) −
100 · χp,s

2

(
P s

t (j)

P s
t−1(j)

−ηp,sΠp,s
t−1−(1−ηp,s)Πp,s

∗

)2

Y m,s
t , for s = c, k.

(14)

where the parameter ηp,s reflects the importance of lagged inflation relative to steady-state

inflation in determining adjustment costs and Πp,s
∗ denotes the steady-state rate of sector s

price inflation. The parameter χp,s scales linearly the magnitude of the adjustment cost

term; in a flexible price model χp,s wouble be equal to zero. In what follows we consider

the most general case of the firm’s profit-maximization problem, that is, the one in which

there are positive price adjustment costs; the first-order conditions implied from a model

with sticky prices can be trivially converted to those of the model with flexible prices by

simply setting the price adjustment cost parameter equal to zero.

In the profit-maximizing part of its problem, the intermediate-good producing firm j,

taking as given the marginal cost MCs
t (j) for producing Y s

t (j), the aggregate sector s price

level P s
t , and final output Y s

t by sector s, chooses its price P s
t (j) to maximize the present

discounted value of its profits subject to the demand curve it faces for its differentiated

output and the costs it faces in adjusting its price (equation ??). Since the intermediate

firms are ultimately owned by the economy’s households, intermediate producers act on

their behalf when making their profit-maximizing price-setting decisions. For this reason the

intermediate firms value their revenues and costs across time exactly as the household would

value them. Consequently, the discount factor that is relevant when comparing nominal

revenues and costs in period t with those in period t+j is βj Λc
t+j/P c

t+j

Λc
t/P c

t
, where Λc

t =
∫ 1
0 Λc

t(i)di.

The variable Λc
t(i) denotes the household i’s marginal utility of consumption in period t,

which implies that Λc
t is the average marginal utility of consumption across households. Put
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formally, the sector s intermediate-good producing firm’s profit-maximization problem is:

max
{P s

t (j),Y m,s
t (j),Y f,s

t (j)}∞t=0

E0

∞∑

t=0

βt Λc
t

P c
t

(
(1 + σp,s) P s

t (j)Y f,s
t (j)−MCs

t (j)Y m,s
t (j)

}

subject to

Y m,s
τ (j)=

(
P s

τ (j)

P s
τ

)−Θy,s
τ

Y m,s
τ and

Y f,s
τ (j) = Y m,s

τ (j) −
100 · χp,s

2

(
P s

τ (j)

P s
τ−1(j)

−ηp,sΠp,s
τ−1−(1−ηp,s)Πp,s

∗

)2

Y m,s
τ

for τ = 0, 1, ...,∞, and s = c, k. (15)

The parameter σp,s = (Θp,s
∗ − 1)−1 is a subsidy to production that is set to ensure that the

economy’s level of steady-state output is Pareto optimal.

3.3 Capital Owners

Capital owners possess the technology described in equation (8) for transforming capital

goods, purchased from capital final-goods producing firm, into a capital stock that can be

used in the production of the economy’s two diferentiated intermediate goods.

We assume that capital owners face a cost in moving capital between the two interme-

diate goods producing sectors of the economy (but do not encounter any cost in moving

capital between firms within the same sector). Specifically, the relationship between the

aggregate capital stock Kt(k) and the capital stocks used in the consumption and capital

intermediate goods producting sectors, that is Kc
t (k) and Kk

t (k), is given by:

Kc
t (k)+Kk

t (k)=Kt(k)−
100 · χk

2

(
Kc

t (k)

Kk
t (k)

−ηk Kc
t−1

Kk
t−1

−(1 − ηk)
K̃c

∗

K̃k
∗

)2
Kk

t

Kc
t

· Kt. (16)

where the parameter ηk reflects the importance of lagged composition of capital supply

relative to the steady-state composition, K̃c
∗/K̃k

∗ , in determining adjustment costs. The

parameter χk scales linearly the magnitude of the adjustment cost term.

The representative competitive capital owner, taking as given the rental rate on capital

in the economy’s two sectors, Rk,c
t and Rk,k

t , the price of capital goods P k
t , and the stochastic

discount factor βj Λc
t+j/P c

t+j

Λc
t/P c

t
, chooses investment, It(k) and the capital stocks it supplies to

the economy’s two sectors Kc
t (k) and Kk

t (k), to maximize the present discounted value of

profits subject to the law of motion governing the evolution of capital (equation 8) and
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given the costs implied by moving capital between the sectors (equation 16).1 Specifically,

the capital owner solves:

max
{It(k),Kt+1(k),Kc

t (k),Kk
t (k)}∞t=0

E0

∞∑

t=0

βt Λc
t

P c
t

{
Rk,c

t Kc
t (k) + Rk,k

t Kk
t (k) − P k

t It(k)
}

subject to

Kτ+1(k)=(1 − δ)Kτ (k)+Iτ (k)−
100 · χi

2

(
Iτ (k)−ηiIτ−1(k)Γy,k

t −(1 − ηi)Ĩ∗Z
m
τ Zk

τ

Kτ

)2

Kτ

Kc
τ (k)+Kk

τ (k)=Kτ (k)−
100 · χk

2

(
Kc

τ (k)

Kk
τ (k)

−ηk Kc
τ−1

Kk
τ−1

−(1 − ηk)
K̃c

∗

K̃k
∗

)2
Kk

τ

Kc
τ

· Kτ .

for τ = 0, 1, ...,∞. (17)

3.4 Households

Household’s utility, which is defined over consumption and leisure, is described by equa-

tion (9).

Since each household supplies its own differentiated variety of labor to each sector,

Lu,s
t (i), it is able to set its wage W s

t (i). It does this taking into account the demand

schedule for its labor that it faces from intermediate goods sector s and the adjustment

costs that it encounters in altering its wage and the composition of its labor. Analogous

to to the constraint faced by intermediate goods producers, wage-setting adjustment costs

are introduced to the model through the assumption that the act of altering wages absorbs

some of the household’s time endowment resources, which implies that not all of the hours

that the household devotes to working Lu,s
t results in productive wage-earning hours Ly,s

t .

In addition we assume that redircting labor from one sector to the other is also diverts

time away from leisure that does not showing up as productive wage-earning hours. This

latter cost is split between the two types of labor that the household supplies to the market.

Together these adjustment costs imply that

Ly,s
t (i)=Lu,s

t (i) −
100 · χw,s

2

(
W s

t (j)

W s
t−1(j)

−ηw,sΠw,s
t−1−(1−ηp,s)Πw

∗

)2

Lu,s
t

−
Lu,s
∗

Lu,c
∗ +Lu,k

∗

·
10 · χl

2

(
Lu,c

t (i)

Lu,k
t (i)

−ηl L
u,c
t−1

Lu,k
t−1

−(1−ηl)
Lu,c
∗

Lu,k
∗

)2
Lu,k

t

Lu,c
t

, for s = c, k.

(18)

1The economy’s capital stock is also ultimately owned by the households, so that the relevant discount

factor in comparing nominal earnings and expenditures in period t with those in period t+ j is βj Λc
t+j/P c

t+j

Λc
t /P c

t
.
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The parameter ηw,s reflects the importance of lagged wage inflation relative to steady-state

inflation in determining adjustment costs and Πw
∗ denotes the steady-state rate of wage

inflation (which is equal across sectors). The parameter χw,s scales linearly the magnitude

of the adjustment cost term; in a flexible price model χw,s wouble be equal to zero. The

parameter ηl reflects the importance of lagged composition of labor supply relative to the

steady-state composition, Lu,c
∗ /Lu,k

∗ , in determining adjustment costs. The parameter χl

scales linearly the magnitude of the adjustment cost term.

The household’s budget constraint is given by

Et

[
R−1

t Bt+1(i)
]

= Bt(i) +
∑

s=c,k

(1 + σw,s)W s
t (i)Ly,s

t (i) + Profitst(i) − P c
t Ct(i) (19)

where the variable Bt(i) is the state-contingent value, in terms of the numeraire, of household

i’s asset holdings at the beginning of period t. We assume that there exists a riskfree one-

period bond, which pays one unit of the numeraire in each state, and denote its yield—that

is, the gross nominal interest rate between periods t and t + 1—by Rt ≡
(
Etβ

Λc
t+1/P c

t+1

Λc
t/P c

t

)−1
.

Profits are those repatriated from capital owner and intermediate good producing firms who,

as already noted, are ultimately owned by households. The parameter σw,s = (Θw,s
∗ − 1)−1

is a subsidy to labor that is set to ensure that the economy’s level of steady-state labor

(and consequently output) is Pareto optimal.

The household, taking as given the expected path of the gross nominal interest rate Rt,

the consumption good price level P c
t , the aggregate wage rate in each sector W s

t , profits

income, and the initial bond stock B0(i), chooses its consumption Ct(i) and its wage in each

sector W s
t (i) to maximize its utility subject to its budget constraint and the demand curve

11



it faces for its differentiated labor. Specifically, the household solves:

max
{Ct(i),{W s

t (i),Lu,s
t (i),Ly,s

t (i)}s=c,k,Bt+1(i)}
∞

t=0

E0

∞∑

t=0

βt

{
Ξb

t ln(Ct(i)−hCt−1)−ςΞl
t

(Lu,c
t (i)+Lu,k

t (i))1+ν

1 + ν

}

subject to

Et

[
R−1

τ Bτ+1(i)
]
=Bτ (i) +

∑

s=c,k

(1 + σw,s)W s
τ (i)Ly,s

τ (i) + Profitsτ (i) − P c
τ Cτ (i)

Ly,s
τ (i)=Lu,s

τ (i) −
100 · χw,s

2

(
W s

τ (j)

W s
τ−1(j)

−ηw,sΠw,s
τ−1−(1−ηp,s)Πw

∗

)2

Lu,s
τ

−
Lu,s
∗

Lu,c
∗ +Lu,k

∗

·
10 · χl

2

(
Lu,c

τ (i)

Lu,k
τ (i)

−ηl L
u,c
τ−1

Lu,k
τ−1

−(1−ηl)
Lu,c
∗

Lu,k
∗

)2
Lu,k

τ

Lu,c
τ

, for s = c, k.

Ly,c
τ (i)=

(
W c

τ (i)

W c
τ

)−Θl,c
τ

Ly,c
τ , and Ly,k

τ (i)=

(
W k

τ (i)

W k
τ

)−Θl,k
τ

Ly,k
τ , for τ = 0, 1, ...,∞. (20)

3.5 Goods and Factor Market Clearing

We note the following goods and factor market clearing conditions. The market clearing

conditions for labor and capital supplied and demanded in sector s are given by

Ly,s
t (i) =

∫ 1

0
Ly,s

t (i, j)dj and

∫ 1

0
Ks

t (k)dk =

∫ 1

0
Ks

t (j)dj for all i ∈ [0, 1] and for s = c, k.

(21)

The market clearing conditions for final consumption goods output and consumption ex-

penditure and final capital goods output and investment expenditure are is given by

Y f,c
t =

∫ 1

0
Ct(i)di and Y f,k

t =

∫ 1

0
It(k)dk. (22)

3.6 Identities

The model also consists of the following identities:

W s
t (i) = Πw,s

t (i)W s
t−1(i) and W s

t = Πw,s
t W s

t−1 for all i ∈ [0, 1] and for s = c, k, and (23)

P s
t (i) = Πp,s

t (i)P s
t−1(i) and P s

t = Πp,s
t P s

t−1 for all i ∈ [0, 1] and for s = c, k. (24)

3.7 Aggregate Output and Aggregate Price Inflation

As will be discussed shortly the central bank sets monetary policy in accordance with an

interest rate rule that responds to GDP output growth and GDP inflation—variables that

have not yet been defined in our model. Multi-sector models do not possess—or indeed

12



necessarily require—any aggregate output or aggregate price concept but to the extent that

monetary policy is interested in these variables in setting interest rates it is necessary for us

to construct such concepts. We choose construct our aggregate activity and price inflation

variables in the same way that the Bureau of Economic Analysis (BEA) does in producing

the National Income and Product Accounts (NIPA). Specifically, real GDP growth, Hy,gdp
t

is a chain-weighted aggregate of output growth in the consumption and investment goods

sectors—that is, Y y,c
t /Y y,c

t−1 and Y y,k
t /Y y,k

t−1—and the growth of autonomous output—denoted

Hy,gf (which is itself the chain-weighted sum of government and foreign demand). GDP

price inflation, Πp,gdp
t , is a chain-weighted aggregate of consumption and capital goods

price inflation—that is, Πp,c
t = P c

t /P c
t−1 and Πp,k

t = P k
t /P k

t−1—and the rate of increase

of the autonomous output price deflator—Πp,gf
t . The precise formulas for these aggregate

variables are given by

Hy,gdp
t =

(
Y c

t /Y c
t−1

) 1
2
·

Pc
t Y c

t

Pc
t Y c

t +Pk
t Y k

t +P
gf
t Y

gf
t

+ 1
2
·

Pc
t−1Y c

t−1

Pc
t−1Y c

t−1+Pk
t−1Y k

t−1+P
gf
t−1Y

gf
t−1

×
(
Y k

t /Y k
t−1

) 1
2
·

Pk
t Y k

t

Pc
t Y c

t +Pk
t Y k

t +P
gf
t Y

gf
t

+ 1
2
·

Pk
t−1Y k

t−1

Pc
t−1Y c

t−1+Pk
t−1Y k

t−1+P
gf
t−1Y

gf
t−1

×
(
Hy,gf

t

) 1
2
·

P
gf
t Y

gf
t

Pc
t Y c

t +Pk
t Y k

t +P
gf
t Y

gf
t

+ 1
2
·

P
gf
t−1Y

gf
t−1

Pc
t−1Y c

t−1+Pk
t−1Y k

t−1+P
gf
t−1Y

gf
t−1 (25)

and

Πp,gdp
t = (Πp,c

t )

1
2
·

Pc
t Y c

t

Pc
t Y c

t +Pk
t Y k

t +P
gf
t Y

gf
t

+ 1
2
·

Pc
t−1Y c

t−1

Pc
t−1Y c

t−1+Pk
t−1Y k

t−1+P
gf
t−1Y

gf
t−1

×
(
Πp,k

t

) 1
2
·

Pk
t Y k

t

Pc
t Y c

t +Pk
t Y k

t +P
gf
t Y

gf
t

+ 1
2
·

Pk
t−1Y k

t−1

Pc
t−1Y c

t−1+Pk
t−1Y k

t−1+P
gf
t−1Y

gf
t−1

×
(
Πp,gf

t

) 1
2
·

P
gf
t Y

gf
t

Pc
t Y c

t +Pk
t Y k

t +P
gf
t Y

gf
t

+ 1
2
·

P
gf
t−1Y

gf
t−1

Pc
t−1Y c

t−1+Pk
t−1Y k

t−1+P
gf
t−1Y

gf
t−1 . (26)

We normalized the autonomous output price deflator to that of the consumption good

sector. The growth rate of autonomous output Hgf
t is exogenous to our model and assumed

to follow AR(1) process. Specifically, letting hy,gf
t = lnHy,gf

t − lnHy,gf
∗ , we allow

hgf
t = ρh,gf · hgf

t−1 + ǫh,gf
t .

13



3.8 Monetary Authority

The central bank sets monetary policy in accordance with an Taylor-type interest-rate

feedback rule. Policymakers smoothly adjust the actual interest rate Rt to its target level R̄t

Rt = (Rt−1)
φr (

R̄t

)1−φr

exp [ǫr
t ] , (27)

where the parameter φr reflects the degree of interest rate smoothing, while ǫr
t represents a

monetary policy shock. The central bank’s target nominal interest rate R̄t is given by:

R̄t =
(
Πp,gdp

t /Πp,gdp
∗

)φπ,gdp (
∆Πp,gdp

t

)φ∆π,gdp (
Hy,gdp

t /Hy,gdp
∗

)φh,gdp (
∆Hy,gdp

t

)φ∆h,gdp

R∗.

(28)

where R∗ denotes the economy’s steady-state nominal interest rate (which is equal to

(1/β)Πp,c
∗ Γz,m

∗ (Γz,k
∗ )α(Γz,c

∗ )1−α) and φπ,gdp, φ∆π,gdp, φh,gdp, and φ∆h,gdp denote the weights

in the feedback rule.

3.9 Equilibrium

Before characterizing equilibrium in this model, we define one additional variable, the price

of installed capital Qk
t (k). This variable is equal to the lagrange multiplier on the capital

evolution equation that would be implied by the kth capital owner’s profit-maximization

problem (equation 17).

Equilibrium in our model is an allocation:

{
Hy,gdp

t , Y f,c
t , Y f,k

t , {Y f,c
t (j)}1

j=0, {Y
f,k
t (j)}1

j=0, {Y
m,c
t (j)}1

j=0, {Y
m,k
t (j)}1

j=0, {Ct(i)}
1
i=0,

{It(k)}1
k=0, {L

u,c
t (i)}1

i=0, {L
u,k
t (i)}1

i=0, {L
y,c
t (i)}1

i=0, {L
y,k
t (i)}1

i=0, {Kt+1(k)}1
k=0,

{Kc
t (k)}1

k=0, {K
k
t (k)}1

k=0, {K
c
t (j)}

1
j=0, {K

k
t (j)}1

j=0, {{L
y,c
t (i, j)}1

i=0}
1
j=0, {{L

y,k
t (i, j)}1

i=0}
1
j=0,

}∞

t=0

and a sequence of values

{
Πp,gdp

t , Πp,c
t , Πp,k

t , Πp,c
t (j), Πp,k

t (j), Πw,c
t , Πw,k

t , Πw,c
t (i), Πw,k

t (i), P k
t /P c

t , {P c
t (j)/P c

t }
1
j=0,

{P k
t (j)/P c

t }
1
j=0, R

k
t /P c

t , Rk,c
t /P c

t , Rk,k
t /P c

t , W c
t /P c

t , W k
t /P c

t , {W c
t (i)/P c

t }
1
i=0,

{W k
t (i)/P c

t }
1
i=0, {MCc

t (j)/P c
t }

1
j=0, {MCk

t (j)/P c
t }

1
j=0, {Q

k
t (k)/P c

t }
1
k=0, Rt

}∞

t=0

that satisfy the following conditions:

• the final-good producing firms solve (11) for s = c and k;

14



• all intermediate-good producers j ∈ [0, 1] solve (12), (13), and (15) for s = c and k;

• all capital owners k ∈ [0, 1] solves (17);

• all households i ∈ [0, 1] solve (20);

• all factor markets clear as in (21);

• all intermediate goods markets clear (by construction);

• the two final goods markets clear as in (22);

• the identities given in (23) hold, but are modified slightly to

W s
t (i)

P c
t

=
Πw,s

t (i)

Πp,c
t

·
W s

t−1(i)

P c
t−1

and
W s

t

P c
t

=
Πw,s

t

Πp,c
t

·
W s

t−1

P c
t−1

for all i ∈ [0, 1] and for s = c, k;

• the identities given in (24) hold, although are modified slightly to

P s
t (j)

P c
t

=
Πp,s

t (j)

Πp,c
t

·
P s

t−1(i)

P c
t−1

and
P k

t

P c
t

=
Πp,k

t

Πp,c
t

·
P k

t−1

P c
t−1

for all i ∈ [0, 1] and for s = c, k;

• the monetary authority follows (27) and (28), where the Hy,gdp
t and Πp,gdp

t are defined

by equations (25) and (26).

In solving these problems agents take as given the initial values of K0 and R−1, and the

sequence of exogenous variables

{
Ac

t , A
k
t , A

m
t , Γz,c

t , Γz,k
t , Γz,m

t , Θy,c
t , Θy,k

t , Θl,c
t , Θl,k

t , Ξb
t , Ξ

l
t, H

y,gf
t

}∞

t=0

implied by the sequence of shocks

{
ǫa,c
t , ǫa,k

t , ǫa,m
t , ǫz,c

t , ǫz,k
t , ǫz,m

t , ǫθ,y,c
t , ǫθ,y,k

t , ǫθ,l,c
t , ǫθ,l,k

t , ǫξ,b
t , ǫξ,l

t , ǫr
t , ǫ

h,gf
t , ǫπ,gf

t

}∞

t=0
.

4 Preparing the Model for Estimation

We make a number of modifications to the variables in the model before estimating it is the

following section. First, we simplify the model by noting that all of the individuals within

any class of agents—that is, all households, all capital owners, and all intermediate-goods

producing firms within the same sector—behave identically to each other. This allows us to

drop the i, j, and k indices from all of the model’s variables. For the variables pertaining

to the decisions of the intermeidate goods producing firms decisions this implies that:
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• Y f,c
t (j) = Y f,c

t , Y f,k
t (j) = Y f,k

t , Y m,c
t (j) = Y m,c

t , Y m,k
t (j) = Y m,k

t , Kc
t (j) = Kc

t ,

Kk
t (j) = Kk

t , Ls,c
t (i, j) = Ls,c

t (i), Ls,k
t (i, j) = Ls,k

t (i), MCc
t (j)/P c

t = MCc
t /P c

t ,

MCk
t (j)/P c

t = MCk
t /P c

t , P c
t (j)/P c

t = 1, P k
t (j)/P c

t = P k
t /P c

t , Πp,c
t (j) = Πp,c

t , and

Πp,c
t (j) = Πp,c

t for all j ∈ [0, 1].

For the variables pertaining to the decisions of the capital owners this implies that:

• It(k) = It, Kc
t (k) = Kc

t , Kk
t (k) = Kk

t , and Kt+1(k) = Kt+1(k) for all k ∈ [0, 1].

For the variables pertaining to the decisions of the households this implies that:

• Ct(i) = Ct, Lu,c
t (i) = Lu,c

t , Lu,k
t (i) = Lu,k

t , Ly,c
t (i) = Ly,c

t , Ly,k
t (i) = Ly,k

t , W c
t (i)/P c

t =

W c
t /P c

t , W k
t (i)/P c

t = W k
t /P c

t , Πw,c
t (i) = Πw,c

t , and Πw,k
t (i) = Πw,k

t for all i ∈ [0, 1].

We write the equations of the model so that they are all expressed in terms of stationary

variables. The stochastic unit-root Zs
t technology terms described in equation (3) for s =

c, k, m introduce non-stationarities into the model that are divergent across variables. The

model variables that must be modified to render them stationary, along with a description

of how they are transformed to be made stationary, is given below.

Ỹ f,c
t =

Y f,c
t

Zm
t (Zk

t )α(Zc
t )

1−α
, Ỹ f,k

t =
Y f,k

t

Zm
t Zk

t

, Ỹ m,c
t =

Y m,c
t

Zm
t (Zk

t )α(Zc
t )

1−α
, Ỹ m,k

t =
Y m,k

t

Zm
t Zk

t

, Ĩt =
It

Zm
t Zk

t

,

C̃t =
Ct

Zm
t (Zk

t )α(Zc
t )

1−α
, K̃t+1 =

Kt+1

Zm
t Zk

t

, K̃c
t =

Kc
t

Zm
t−1Z

k
t−1

, K̃k
t =

Kk
t

Zm
t−1Z

k
t−1

, P̃ k
t =

P k
t

P c
t

(
Zk

t

Zc
t

)1−α

,

R̃k
t =

Rk
t

P c
t

(
Zk

t

Zc
t

)1−α

, R̃k,c
t =

Rk,c
t

P c
t

(
Zk

t

Zc
t

)1−α

, R̃k,k
t =

Rk,k
t

P c
t

(
Zk

t

Zc
t

)1−α

, W̃ c
t =

W c
t

P c
t

·
1

Zm
t (Zk

t )α(Zc
t )

1−α
,

W̃ k
t =

W k
t

P c
t

·
1

Zm
t (Zk

t )α(Zc
t )

1−α
, Q̃t =

Qt

P c
t

(
Zk

t

Zc
t

)1−α

, M̃C
c

t =
MCc

t

P c
t

, and M̃C
k

t =
MCk

t

P c
t

(
Zk

t

Zc
t

)1−α

.

Equilibrium in the symmetric and stationary model must still satisfy the conditions listed

in section 3.9, although some of the conditions—specifically, those implied by the final

goods producing firm’s cost minimization problem, given by (11), and the first-

stage of the intermediate goods producing firm’s cost-minimization problem,

given by (12)—are rendered inconsequential by the symmetry of the model.

The second-stage of the intermediate goods producing firm’s cost-minimization

problem, given by (13), implies the following labor demand schedule, capital demand
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schedule, and marginal cost expression for sector s:

Ly,s
t =

(
1 − α

α

)α Ỹ m,s
t

(Am
t As

t )
1−α

(
W̃ s

t

R̃k,s
t

)−α

, for s = c, k (29)

K̃s
t

Γy,k
t

=

(
α

1 − α

)1−α Ỹ m,s
t

(Am
t As

t )
1−α

(
W̃ s

t

R̃k,s
t

)1−α

, for s = c, k. (30)

M̃C
s

t =
1

(Am
t As

t )
1−α

(
W̃ s

t

1 − α

)1−α(
R̃k,s

t

α

)α

, for s = c, k. (31)

The intermediate goods producing firms’ profit-maximization problem, given by

(15), yields the sector s supply (or Phillips) curve and an expression that captures the real

costs of changing prices:

Θy,s
t M̃C

s

t Ỹ
m,s
t = (1 + σp,s) (Θy,s

t − 1) P̃ s
t Ỹ m,s

t

+ 100 · χp,s
(
Πs

t−ηp,sΠs
t−1−(1−ηp,s)Πs

∗

)
Πs

t P̃
s
t Ỹ m,s

t

− βEt

{
Λ̃c

t+1

Λ̃c
t

· 100·χp,s
(
Πs

t+1−ηp,sΠs
t−(1−ηp,s)Πs

∗

)
Πs

t+1P̃
s
t+1Ỹ

m,s
t+1

}

for s = c, k, (32)

Ỹ f,s
t = Ỹ m,s

t −
100 · χp,s

2

(
Πp,s

t −ηp,sΠp,s
t−1−(1−ηp,s)Πp,s

∗

)2
Ỹ m,s

t for s = c, k. (33)

The capital owner’s profit-maximization problem, given by (17), yields the fol-

lowing conditions for the supply of capital

Q̃t = βEt

{
Λ̃c

t+1

Λ̃c
t

·
1

Γy,k
t+1

(
R̃k

t+1 + (1 − δ)Q̃t+1

)}
(34)

R̃k,c
t = R̃k

t

[
1 + 100 · χk

(
K̃c

t

K̃k
t

−ηk K̃c
t−1

K̃k
t−1

−(1 − ηk)
K̃c

∗

K̃k
∗

)
K̃t

K̃c
t

]
(35)

R̃k,k
t = R̃k

t

[
1 − 100 · χk

(
K̃c

t

K̃k
t

−ηk K̃c
t−1

K̃k
t−1

−(1 − ηk)
K̃c

∗

K̃k
∗

)
K̃t

K̃k
t

]
(36)

P̃ k
t = Q̃t

[
1 − 100 · χi

(
Ĩt−ηiĨt−1−(1 − ηi)Ĩ∗

K̃t

· Γy,k
t

)]

+βEt

{
Λ̃c

t+1

Λ̃c
t

· Q̃t+1 ·100·χi ·ηi ·Γy,k
t+1

(
Ĩt+1−ηiĨt−(1 − ηi)Ĩ∗

K̃t+1

· Γy,k
t+1

)}
(37)
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as well as an implied expression for investment demand and a market clearing condition for

capital:

K̃t+1 = (1 − δ)
K̃t

Γy,k
t

+Ĩt −
100 · χi

2

(
Ĩt−ηiĨt−1−(1 − ηi)Ĩ∗

K̃t

· Γy,k
t

)2
K̃t

Γy,k
t

(38)

K̃c
t +K̃k

t = K̃t −
100 · χk

2

(
K̃c

t

K̃k
t

−ηk K̃c
t−1

K̃k
t−1

−(1 − ηk)
K̃c

∗

K̃k
∗

)2
K̃k

t

K̃c
t

· K̃t (39)

The household’s utility-maximization problem, given by (20), implies the fol-

lowing expression for consumption demand and labor supply as well as an expression that

captures the real cost of changing wages and the composition of labor:

Λ̃c
t = βRtEt

[
Λ̃c

t+1 ·
1

Πp,c
t+1Γ

y,c
t+1

]
(40)

Θl,s
t

Λ̄l,s
t

Λ̃c
t

Lu,s
t = (1 + σw,s)

(
Θl,s

t − 1
)

W̃ s
t Lu,s

t

+
Λ̄l,s

t

Λ̃c
t

100 · χw,s
(
Πw,s

t −ηw,sΠw,s
t−1−(1−ηw,s)Πw,s

∗

)
Πw,s

t W̃ s
t Lu,s

t

− βEt

{
Λ̃c

t+1

Λ̃c
t

·
Λ̄l,s

t

Λ̃c
t

100·χw,s
(
Πw,s

t+1−ηw,sΠw,s
t −(1−ηw,s)Πw,s

∗

)
Πw,s

t+1W̃
s
t Lu,s

t+1

}

for s = c, k. (41)

Ly,s
t = Lu,s

t −
100 · χw,s

2

(
Πw,s

t −ηw,sΠw,s
t−1−(1−ηp,s)Πw

∗

)2
Lu,s

t

−
Lu,s
∗

Lu,c
∗ +Lu,k

∗

·
100 · χl

2

(
Lu,c

t

Lu,k
t

−ηl L
u,c
t−1

Lu,k
t−1

−(1−ηl)
Lu,c
∗

Lu,k
∗

)2
Lu,k

t

Lu,c
t

,

for s = c, k. (42)

where the normalized marginal utility of consumption, Λ̃c
t , is given by

Λ̃c
t =Ξb

t

(
C̃t − hC̃t−1/Γy,c

t

)−1
, (43)

18



and Λ̄l,c
t and Λ̄l,c

t are related to the marginal dis-utilities of labor, Λl,c
t and Λl,k

t , according

to:

Λ̄l,c
t Lu,c

t = ςΞl
t

(
Lu,c

t +Lu,k
t

)ν

︸ ︷︷ ︸
Λl,c

t

Lu,c
t +

Λ̃c
t

P c
t

(
W c

t Lc
t +W k

t Lk
t

)
100·χl

(
Lu,c

t

Lu,k
t

−ηl L
u,c
t−1

Lu,k
t−1

−(1−ηl)
Lu,c
∗

Lu,k
∗

)

(44)

Λ̄l,k
tL

u,k
t = ςΞl

t

(
Lu,c

t +Lu,k
t

)ν

︸ ︷︷ ︸
Λl,c

t

Lu,k
t −

Λ̃c
t

P c
t

(
W c

t Lc
t +W k

t Lk
t

)
100·χl

(
Lu,c

t

Lu,k
t

−ηl L
u,c
t−1

Lu,k
t−1

−(1−ηl)
Lu,c
∗

Lu,k
∗

)

(45)

The stationary final goods market clearing conditions are given by:

Ỹ c
t = C̃t and Ỹ k

t = Ĩt. (46)

And the stationary wage and price level and inflation identities are given by:

W̃ c
t =

Πw,c
t

Πp,c
t

·
1

Γy,c
t

· W̃ c
t−1, W̃ k

t =
Πw,k

t

Πp,c
t

·
1

Γy,c
t

· W̃ k
t−1, and P̃ k

t =
Πw,s

t

Πp,c
t

·
Γy,s

t

Γy,c
t

· P̃ k
t−1. (47)

Equations (27) and (28), that describe the monetary authorities’ policy feedback rule,

are unchanged in the stationary model, and Πp,gdp
t is still given by equation (26). The

expression for Hy,gdp
t , however, is re-written as:

Hy,gdp
t =

(
Γy,c

t · Ỹ c
t /Ỹ c

t−1

) 1
2
·

Pc
t Y c

t

Pc
t Y c

t +Pk
t Y k

t +P
gf
t Y

gf
t

+ 1
2
·

Pc
t−1Y c

t−1

Pc
t−1Y c

t−1+Pk
t−1Y k

t−1+P
gf
t−1Y

gf
t−1

×
(
Γy,k

t · Ỹ k
t /Ỹ k

t−1

) 1
2
·

Pk
t Y k

t

Pc
t Y c

t +Pk
t Y k

t +P
gf
t Y

gf
t

+ 1
2
·

Pk
t−1Y k

t−1

Pc
t−1Y c

t−1+Pk
t−1Y k

t−1+P
gf
t−1Y

gf
t−1

×
(
Hy,gf

t

) 1
2
·

P
gf
t Y

gf
t

Pc
t Y c

t +Pk
t Y k

t +P
gf
t Y

gf
t

+ 1
2
·

Pc
t−1Y c

t−1

Pc
t−1Y c

t−1+Pk
t−1Y k

t−1+P
gf
t−1Y

gf
t−1 . (48)

4.1 Equilibrium

Equilibrium in the symmetric and stationary model can thus be defined as an allocation:

{
Hy,gdp

t , Ỹ f,c
t , Ỹ f,k

t , Ỹ m,c
t , Ỹ m,k

t , C̃t, Ĩt, L
u,c
t , Lu,k

t , Ly,c
t , Ly,k

t , K̃t+1, K̃
c
t , K̃

k
t

}∞

t=0

and a sequence of values

{
Πp,gdp

t , Πp,c
t , Πp,k

t , Πw,c
t , Πw,k

t , P̃ k
t , R̃k

t , R̃
k,c
t , R̃k,k

t , W̃ c
t , W̃ k

t , M̃C
c

t , M̃C
k

t , Q̃
k
t , Rt

}∞

t=0
.
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that satisfy equations (26) to (48), taking as given the initial values of K0 and R−1, and

the sequence of exogenous variables

{
Ac

t , A
k
t , A

m
t , Γz,c

t , Γz,k
t , Γz,m

t , Θy,c
t , Θy,k

t , Θl,c
t , Θl,k

t , Ξb
t , Ξ

l
t, H

y,gf
t

}∞

t=0

implied by the sequence of shocks

{
ǫa,c
t , ǫa,k

t , ǫa,m
t , ǫz,c

t , ǫz,k
t , ǫz,m

t , ǫθ,y,c
t , ǫθ,y,k

t , ǫθ,l,b
t , ǫθ,l,k

t , ǫξ,c
t , ǫξ,l

t , ǫr
t , ǫ

h,gf
t

}∞

t=0
.

5 Estimation

This sections describes in detail the empirical approach chosen in this paper. We first make

a number of assumptions to the model; these are outlined in section 6.1. We solve the

log-linear approximation to the modified DSGE model; the solution is given in section 5.2.2

This resulting dynamical system is cast under its state space representation for a determined

set of (in our case nine) observable variables. These variables, their data sources, and

their relation to the variables in the model are described in section 5.3. We then use the

kalman filter to evaluate the likelihood of the observed variables. We form the posterior

distribution of the parameters of interest by combining the likelihood function with a joint

density characterizing some prior beliefs and information we have about them; our priors

are listed in section 5.4. Since we do not have a closed-form solution of the posterior, we

rely on Markov-Chain Monte Carlo (MCMC) methods to draw from it3.

5.1 Assumptions about the Structure of the Estimated Model

Prior to estimation the following assumption were made about the specifications of the

model.

• As in Smets and Wouters [2004], we reduce the markup shocks, θy,c
t , θy,k

t , θl,c
t , and θl,k

t

to white noise processes. I addition we assume that there is only one mark-up shock

process for the overall labor market, so that θl
t = θl,c

t = θl,k
t .

2We do this using the package gensys.m written by Chris Sims to obtain this solution.

3We refer the reader to the appendix for a more detailed presentation of the MCMC methods.
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• The parameters measuring the degree of inter-sectorial adjusment costs for capital,

χk, has been set to zero.4

• The estimated version of the model possesses only two technology shocks, a permanent

shock to the level of total factor productivity, represented by Γz,m
t , and a permanent

shock to the level of investment-specific technology, represented by Γz,k
t .5 This elim-

inates from the model the following shocks {ǫa,c
t , ǫa,k

t , ǫa,m
t , ǫz,c

t } which implies that

{Ac
t , A

k
t , A

m
t , Γz,c

t } = {1, 1, 1, Γz,c
∗ }.

• Finally, we have imposed measurement error processes, denoted ηt, for all of the

observables except for the nominal interest rate and the aggregate hours series. In all

cases, the measurement errors explain less that 5 percent of the observed series.6

At this stage of the project, we do not utilize the full possibilities of the multi-sector

approach. We assume (in some sense unrealisticaly) that many features of the sectors are

identical (depreciation rate of capital, indexation coefficients, etc.).

5.2 Solution to the Log-linearized Model

The solution to the log-linearized version of our model is given by:

[
αt

]

︸ ︷︷ ︸
43×1

=
[
T
]

︸ ︷︷ ︸
43×43

·
[

αt−1

]

︸ ︷︷ ︸
43×1

+
[
R
]

︸ ︷︷ ︸
43×9

·
[

ǫt

]

︸ ︷︷ ︸
9×1

(49)

where

αt =
[
hy,gdp

t , yf,c
t , yf,k

t , ym,c
t , ym,k

t , ct, it, l
u,c
t , lu,k

t , ly,c
t , ly,k

t , kt+1, k
c
t , k

k
t , πp,gdp

t , πp,c
t , πp,k

t ,

πw,c
t , πw,k

t , pk
t , r

k
t , rk,c

t , rk,k
t , wc

t , w
k
t , mcc

t , mck
t , q

k
t , rt, γ

z,k
t , γz,m

t , θy,c
t , θy,k

t ,θl
t, ξ

b
t , ξ

l
t, h

y,gf
t

]′
(50)

and

ǫt =
[
ǫz,k
t , ǫz,m

t , ǫθ,y,c
t , ǫθ,y,k

t , ǫθ,l
t , ǫξ,b

t , ǫξ,l
t , ǫr

t , ǫ
h,gf
t

]′
. (51)

4Attempts to estimate the inter-sectorial adjustment cost coefficient associated with capital, χk, have

been unfruitfull in the sense that, based on the current choice of model and data, the best specification is

the one assuming that χk is equal to 0.

5The complexity of the production structure presented in section 2 relative to the number of observables

makes several of the technology shocks redundant and render the model prone to identification issues.

6There is one exception which is consumption growth; issues associated with the ability of DSGE models

to explain consumption are also observed in Smets and Wouters [2004].
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5.3 Data

The model is estimated off nine data series. The series and their sources are:

1. Nominal gross domestic product (GDPn
t ), from the BEA’s National Income and Prod-

uct Accounts.

2. Nominal consumption expenditure on (CNSn
t ), which is equal to the linear aggrega-

tion of nominal personal consumption expenditures on nondurables goods and services,

both from the BEA’s National Income and Product Accounts.

3. Nominal investment expenditure on (CDIn
t ), which is equal to the linear aggregation

of nominal personal consumption expenditures on durable goods and nominal gross

private domestic investment, both from the BEA’s National Income and Product

Accounts.

4. GDP price inflation (GDP π
t ) from the National Income and Product Accounts.

5. Consumption price inflation (CNSπ
t ), which is equal to the chain weighted aggregation

of the rates of price inflation of consumer nondurables goods and consumer services,

both from the BEA’s National Income and Product Accounts.

6. Investment price inflation (CDIπ
t ), which is equal to the chain weighted aggregation

of the rates of price inflation on consumption durable goods and private domestic

investment goods, both from the BEA’s National Income and Product Accounts.

7. Hours (HRSt), which is equal to hours of all persons in the non-farm business sector

from the BLS’ Productivity and Cost release.

8. Wage inflation (WGπ
t ), which is equal to real compensation per hours in the non-farm

business sector from the BLS’ Productivity and Cost release.

9. The federal funds rate (RFFt), that is the policy rate.
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The relationships between the series used to estimate the model and the variables from the

log-linearized version of the model are:

ln
(
GDPn

t /GDPn
t−1

)
= lnΓy,gdp

∗ Πp,gdp
∗ + hgdp

t + πgdp
t (52)

ln
(
CNSn

t /CNSn
t−1

)
= lnΓy,c

∗ Πp,c
∗ + ct − ct−1 + πp,c

t + γz,m
t + αγz,k

t + (1 − α)γz,c
t (53)

ln
(
CDIn

t /CDIn
t−1

)
= lnΓy,k

∗ Πp,k
∗ + it − it−1 + πp,k

t + γz,m
t + γz,k

t (54)

lnGDP π
t = lnΠp,gdp

∗ + πp,gdp
t (55)

lnCNSπ
t = lnΠp,c

∗ + πp,c
t (56)

lnCDIπ
t = lnΠp,k

∗ + πp,k
t (57)

lnWGπ
t = lnΠw

∗ +
Ly,c
∗

Ly,c
∗ + Ly,k

∗

· πw,c
t +

Ly,k
∗

Ly,c
∗ + Ly,k

∗

· πw,k
t (58)

lnRt = lnR∗ + rt (59)

lnHRSt = ln(Lc
∗ + Lk

∗) +
Ly,c
∗

Ly,c
∗ + Ly,k

∗

· ly,c
t +

Ly,k
∗

Ly,c
∗ + Ly,k

∗

· ly,k
t (60)

All of the steady-state values given in equations (52) to (59) are functions of the parameters

of the model (or are themselves parameters of the model, as in the case of Πp,c
∗ ). Specifically,

Γy,c
∗ = Γz,m

∗ (Γz,k
∗ )α(Γz,c

∗ )1−α,

Γy,k
∗ = Γz,m

∗ Γz,k
∗ ,

Γy,gdp
∗ = (Γy,c

∗ )
Pc
∗Y c

∗

Pc
∗Y c

∗ +Pk
∗ Y k

∗ +P
gf
∗ Y

gf
∗

(
Γy,k
∗

) Pk
∗ Y k

∗

Pc
∗Y c

∗ +Pk
∗ Y k

∗ +P
gf
∗ Y

gf
∗

(
Hy,gf

∗

) P
gf
∗ Y

gf
∗

Pc
∗Y c

∗ +Pk
∗ Y k

∗ +P
gf
∗ Y

gf
∗ ,

Πp,k
∗ = Πp,c

∗ (Γy,c
∗ /Γy,k

∗ )=Πp,c
∗ (Γz,c

∗ /Γz,k
∗ )1−α,

Πp,gdp
∗ = (Πp,c

∗ )
Pc
∗Y c

∗

Pc
∗Y c

∗ +Pk
∗ Y k

∗ +P
gf
∗ Y

gf
∗

(
Πp,k

∗

) Pk
∗ Y k

∗

Pc
∗Y c

∗ +Pk
∗ Y k

∗ +P
gf
∗ Y

gf
∗

(
Πp,hf

∗

) P
gf
∗ Y

gf
∗

Pc
∗Y c

∗ +Pk
∗ Y k

∗ +P
gf
∗ Y

gf
∗ ,

Πw,s
∗ = Πw

∗ = Πp,c
∗ Γy,c

∗ = Πp,c
∗ Γz,m

∗ (Γz,k
∗ )α(Γz,c

∗ )1−α,

R∗ = (1/β)Πp,c
∗ Γz,m

∗ (Γz,k
∗ )α(Γz,c

∗ )1−α,

and

Lc
∗ + Lk

∗ =



(

1 + B

A
α

1−α

)
1 − α

ς

(
α

Γy,k
∗ /β − (1 − δ)

) α
1−α (

1 −
h

Γy,c
∗

)−1



1
v+1

,

where

A =
α

Γy,k
∗ /β − (1 − δ)

and B =

[
Γy,k
∗ /β − (1 − δ)

α
·

Γy,k
∗

Γy,k
∗ − (1 − δ)

− 1

]−1

.
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Equations (52) to (59), with the steady-state values listed above imposed, are the measure-

ment equations of our model, which can be summarized as:

[
DATAt

]

︸ ︷︷ ︸
9×1

=
[
Z
]

︸ ︷︷ ︸
9×43

·
[

αt

]

︸ ︷︷ ︸
43×1

+
[
d
]

︸ ︷︷ ︸
9×1

+
[
H
]

︸ ︷︷ ︸
9×9

·
[

ηt

]

︸ ︷︷ ︸
9×1

(61)

where

DATAt =
[
ln
(
GDPn

t /GDPn
t−1

)
, ln
(
CNSn

t /CNSn
t−1

)
, ln
(
CDIn

t /CDIn
t−1

)
,

lnGDP π
t , lnCNSπ

t , lnCDIπ
t , lnWGπ

t , lnRt, lnHRSt]
′ , (62)

d =
[
ln Γy,gdp

∗ Πp,gdp
∗ , ln Γy,c

∗ Πp,c
∗ , ln Γy,k

∗ Πp,k
∗ , lnΠy,gdp

∗ , lnΠy,c
∗ , lnΠy,k

∗ ,

lnΠw
∗ , lnR∗, ln(Lc

∗ + Lk
∗)
]′

, (63)

ηt =
[

ηgdp,n , ηcns,n , ηcdi,n , ηgdp,π , ηcns,π , ηcdi,π , ηwg,π , 0 , 0
]
, (64)

and αt
′ is described as in equation (50). The matrix H is a diagonal matrix for which

Diag(H)=
[

σgdp,n , σcns,n , σcdi,n , σgdp,π , σcns,π , σcdi,π , σwg,π , 0 , 0
]
. (65)

5.4 Prior Distribution

Some of the model’s coefficients were determined and their values fixed prior to the esti-

mation. We based our choices on considerations about the informativeness of the data,

identification issues and overparameterization. The discount factor β is equal to 0.995. The

depreciation rate of capital has been set to 0.025 in both sectors. We assume the same

steady-state markup level across the monopolistic sectors of the economy; Θp,y,c
∗ , Θp,y,k

∗ and

Θw
∗ are equal to 7. We assume that only growth in investment is costly for both sectors,

i.e. ηi = 1. The capital share of income at the steady state corresponds to a α equal to 0.3

for both sectors. The average nominal share of autonomous spending over total GDP has

been set to 0.2.

Table 1 presents our assumptions about the prior distributions of the estimated pa-

rameters. The joint prior distribution is the product of independent densitities. The prior

densities of the adjustment costs parameters, χp, χi, χH and χw are identical and are de-

scribed by a gamma distribution with mean 2 and standard deviation 1. The corresponding

indexation coefficients, ηp, ηi, ηH and ηw, follow beta distributions that share the same

mean, 0.5, and standard deviation, 0.22.
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The confidence intervals implied by the prior distributions of the policy rule parame-

ters are fairly wide, leaving an important role to the data in the determination of these

coefficients.

6 Results

6.1 Posterior Distribution

Once properly weighted by their respective factors, our model indicates that the most

important nominal rigidities are those associated with the wage inflation adjustment costs.

These results are consistent with those presented in Levin et al. [2005] for an one-sector

model of the US economy. Both adjusmtent mechanisms associated with price and wage

inflation indicate that deviations from the steady-state levels are more important that those

derived from lagged values, leaving a lesser role to indexation.

Our estimates of the parameters characterizing the household’s utility function are close

to the bounds of the parameter space. The mass of the posterior distribution for the

elasticity of labor substitution, ν, leans towards its lower range. The posterior density of

the degree of habit formation, h, implies estimtates that are tightly concentrated to values

just below the “a priori” upper bound 1. We consider this an undesireable feature of the

model and in future drafts will consider modifications to the model—such as non-logarithmic

preferences, the presence of rule of thrumb consumers, and differnt assumptions regarding

measurement errors—that could lower the estimated degree of habit persistence.

The posterior distribution also shows that the permanent technology shocks have ex-

plained, on average, a similar share of the growth observed in real consumption and real

total output. We notice that the persistence of the investment-specific technology shock,

ρz,k, is much higher—0.803 compared with 0.544 when evaluated at the mode—than that

of the total-factor productivity shock, ρz,c.

6.2 Variance Decomposition

Table 2 displays the shocks’ contribution to the movements observed at different horizons

in the real observables used in the estimation. Table 3 presents a similar decomposition for

the three prices of section 5.3 and the nominal interest rate.
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6.3 Impulse Responses

Figures 2 through 5 report the impulse responses for the model’s key variables (that is,

the variables for which we use data) following innovations to the model’s nine primitive

shocks. The responses generated by the model to a monetary policy shock, a sector neutral

technology shock, and a capital specific technology shock all conform with conventional

thinking. Following a monetary policy shock, real consumption, real investment, GDP

growth, aggregate hours, and all measures of inflation decline and since real investment

(which also includes consumer durables) is more interest sentsitive than (nondurables and

services) consumption it shows a notably larger declines. Following both of the technology

shocks investment increases strongly (and overshoots its long-run level) to bring the capital

stock inline with the new higher level of technology. Consumption in contrast increases

slowly to its long run level. Price inflation in both the consumption and capital goods

sectors slows, while wage inflation picks up, thereby bring the real wage in to line with its

new higher long-run level.

6.4 Implied Paths

Figure 6 compares the one-step ahead DSGE forecast to the actual observations from the

data. Figure 7 shows the 95 percent confidence bands and the median of the smoothed

paths of the persistent structural shocks. Our model implies that the recession of 1991 was

caused by a decline in both technology shocks, though that of the TFP is more acute. [ To

be completed.]

7 Policy Evaluation

This section presents different exercices related to the use of our estimated DSGE model

for monetary policy. First, we investigate the usefullness of key concepts offered by the

New Keynesian literature in the context of our model. Second, we assess the welfare impli-

cations of simple monetary policy rules under a popular quadractic loss function. We pay

a particular attention to the usefulness of different measures of real activity, beside GDP

inflation, as relevant indicators for the policymakers.
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7.1 Flexible-Price Equilibrium

This section offers a preliminary look at some key concepts put forward by the New Key-

nesian literature as normative instruments for the conduct of monetary policy.7

The first graph of figure 8 displays a key measure of the output gap used by FRB/US in

its simulations and forecasts. The second graph shows our model’s measure of output gap

as defined above8. The correlation between the flex-price gap and the FRB/US measure

is 0.36. Simple calculations show the former leads the latter since lagging the flex-price

measure by one year increases the correlation to 0.6.

Figure 9 shows the estimated and flex-price real rates, both expressed as percentage

deviation from steady-state. We notice that the model’s natural real is a lot more volatile

than the one implied from the estimated model. The lack of persistence and the relatively

large movements displayed by the natural rate can be found in the extremly high estimated

degree of habit formation. Our model implies that as h goes to one, larger changes in the

real rates are needed to induce movements in consumption of equal magnitude.

Figure 10 plots the paths of the natural rate gap, i.e. the estimated real rate minus

the natural rate, and the nominal interest rate. The movements we observe in the natural

rate gap appears consistent with the conventional views: the 80’s tigh policy stance is

associated with positive gaps while the expansionist views following the 1991 and 2001

recessions correspond to fairly negative gaps.

7.2 Simple Policy Rules

The welfare criterion is the standard quadractic loss function:

E
(
πp,gdp

t

)2
+ ΛY E

(
ln(Y gdp

t /Y gdp
t−1 ) − Γy,gdp

∗

)2
+ ΛRE(∆rt)

2. (66)

7Our definition of the output gap is slightly different than that find in Nelson and Neiss [2003] and Smets

and Wouters [2004]. The counterfactual equilibrium still corresponds to an economy where the nominal

rigidities are absent. However, in the spirit of Woodford [2004], we assume that the agents make decisions

based on the actual realizations of the state variables.

8As opposed to the one-sector model, there is no total output concept in our model and the divisa index

only characterizes, in a stationary environment, the growth of total output. For this reason, the output gap

considered in this section is constructed as the sum, weighted by their nominal shares, of the two sectorial

gaps.
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This loss function, as opposed to a welfare-based criterion, makes it easier to compare the

normative implications of our model to the other models currently in use at the Board

such as FRB/US (although we will in subsequent drafts consider both criteria). Real GDP

growth and the GDP deflator are the measures of output growth and inflation that enter

the loss function 66.

We assess simple policy rules of the form:

rt = ρRrt−1 + (1 − ρR)(a1π
p,gdp
t + a2xt) (67)

and

rt = rt−1 + (a1π
p,gdp
t + a2xt) (68)

where xt is always one of four possible policy indicators: (i) real output, growth, (ii) wage

inflation, (iii) the output gap, and (iv) the natural real rate. The last two indicators are

unobserved and are defined in section 7.1. The first two are directly observed from the data

by the policymakers and the private sector.

We assume the values ΛY = 1 and ΛR = 19. Figure 11 presents the welfare surfaces—

that is, inverted loss functions—derived from the rule given in equation 67 for the cases when

xt is one of the two observable indicators and ρR is equal to its posterior mode value, 0.852.

Figure 12 presents the welfare surfaces corresponding to the two unobserved indicators while

ρR stays the same. A welfare level of 0 indicates that the implied equilibrium is not unique

and/or does not exist. The economy achieves its highest level of welfare when the output

gap is used in the policy rule. The corresponding welfare surface favors a moderate long-run

response to inflation, a1 = 1.76, and strong adjustments to movements in the output gap,

a2 = 2.00. The real ouput growth measure produces the lowest welfare levels.

Figures 13 and Figure 14 show similar welfare surfaces for the rule 68, which is often

refered by the literature as a ”first-difference” rule. For any of the real activity measure,

the welfare level associated to the best rule is always higher than its counterpart under the

estimated degree of interest rate smoothing, making a strong case for the ”first-difference”

rule. However, the best indicator under that rule is the output growth, which is a complete

reversal from the stationary case. The best first-difference rule is

rt = rt−1 + (0.51πp,gdp
t + 0.5δygdp

t ), (69)

9We also look at other values, such as ΛY = 1 and ΛR = 0, but we found no major differences in the

normative conclusions derived from the alternative specifications.

28



in which policymakers respond with equal weights to the two indicators.

8 Conclusion

To be completed.
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Table 1: Prior and Posterior Distribution

Prior Distribution Posterior Distribution

Parameter Type Mean S.D. Mode S.D. 10th perc. 50th perc. 90th perc.

h B 0.500 0.224 0.989 0.006 0.981 0.989 0.994

ν G 2.000 1.000 0.266 0.353 0.176 0.511 1.095

φπ,gdp N 2.000 1.000 2.871 0.379 2.441 2.853 3.342

φh,gdp N 0.500 0.400 0.165 0.039 0.119 0.166 0.220

φ△π,gdp N 0.500 0.400 -0.201 0.072 -0.287 -0.195 -0.100

φ△h,gdp N 0.500 0.400 -0.105 0.035 -0.150 -0.104 -0.059

χp,c G 2.000 1.000 3.652 1.256 3.183 4.467 6.455

χl G 2.000 1.000 1.632 1.251 1.301 2.522 4.461

χw,c G 2.000 1.000 4.191 1.825 3.718 5.475 7.923

χi,c G 2.000 1.000 0.752 0.382 0.633 0.945 1.470

ηl B 0.500 0.224 0.349 0.186 0.162 0.394 0.660

ηp,c B 0.500 0.224 0.290 0.112 0.184 0.319 0.474

ηw,c B 0.500 0.224 0.300 0.098 0.160 0.286 0.410

ρR B 0.750 0.112 0.852 0.023 0.821 0.851 0.879

ρξ,b B 0.750 0.112 0.732 0.091 0.621 0.747 0.860

ρh,gf B 0.750 0.112 0.836 0.101 0.648 0.798 0.909

ρξ,l B 0.750 0.112 0.957 0.018 0.930 0.958 0.976

ρz,k B 0.750 0.112 0.803 0.147 0.520 0.746 0.909

ρz,m B 0.750 0.112 0.544 0.085 0.413 0.528 0.630

Γz,k N 1.004 0.002 1.007 0.001 1.005 1.007 1.008

Γz,m N 1.004 0.001 1.002 0.001 1.002 1.002 1.003

Π̄c N 1.005 0.002 1.009 0.001 1.008 1.009 1.009

σξ,b I 3.000 2.000 9.617 4.235 5.755 9.676 15.926

σh,gf I 1.000 2.000 0.564 0.126 0.445 0.584 0.768

σξ,l I 3.000 2.000 7.008 3.240 5.763 9.226 13.991

σR I 0.200 2.000 0.111 0.011 0.104 0.117 0.132

σz,k I 0.500 2.000 0.356 0.227 0.314 0.481 0.863

σz,m I 0.500 2.000 0.539 0.055 0.479 0.543 0.621

σθ,y,c I 0.500 2.000 0.241 0.026 0.209 0.238 0.275

σθ,y,k I 0.500 2.000 0.304 0.034 0.273 0.312 0.359

σθ,w I 0.500 2.000 0.638 0.059 0.576 0.643 0.726
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Figure 1: Prior and posterior distributions
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Table 2: Variance decomposition: real indicators
Shocks Horizon △ct △it △yt △wt Agg. Hours

ǫ
ξ,b
t 1 (0.83,0.91,0.95) (0.00,0.00,0.01) (0.02,0.03,0.04) (0.00,0.00,0.00) (0.05,0.07,0.09)

5 (0.65,0.77,0.87) (0.00,0.00,0.00) (0.01,0.02,0.03) (0.00,0.00,0.00) (0.04,0.05,0.07)

10 (0.42,0.59,0.73) (0.00,0.00,0.00) (0.01,0.02,0.03) (0.00,0.00,0.00) (0.03,0.05,0.07)

40 (0.07,0.15,0.26) (0.01,0.01,0.03) (0.06,0.11,0.21) (0.01,0.01,0.02) (0.14,0.24,0.37)

ǫ
h,gf
t 1 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.05,0.07,0.10) (0.00,0.00,0.00) (0.00,0.00,0.00)

5 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

10 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

40 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

ǫ
ξ,l
t 1 (0.02,0.04,0.09) (0.34,0.44,0.50) (0.23,0.28,0.33) (0.01,0.02,0.03) (0.53,0.64,0.71)

5 (0.05,0.10,0.18) (0.46,0.58,0.65) (0.39,0.48,0.55) (0.18,0.25,0.34) (0.67,0.77,0.82)

10 (0.09,0.18,0.30) (0.53,0.65,0.73) (0.47,0.57,0.65) (0.42,0.52,0.61) (0.71,0.81,0.86)

40 (0.04,0.13,0.27) (0.40,0.67,0.79) (0.11,0.36,0.63) (0.70,0.80,0.86) (0.02,0.14,0.35)

ǫR
t 1 (0.00,0.00,0.00) (0.00,0.00,0.01) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.01,0.01)

5 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.01)

10 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

40 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

ǫz,k 1 (0.00,0.01,0.02) (0.09,0.16,0.28) (0.03,0.06,0.12) (0.00,0.00,0.00) (0.03,0.06,0.13)

5 (0.01,0.02,0.04) (0.07,0.13,0.24) (0.03,0.07,0.14) (0.00,0.01,0.01) (0.03,0.06,0.13)

10 (0.02,0.04,0.09) (0.06,0.12,0.25) (0.04,0.08,0.16) (0.01,0.02,0.04) (0.02,0.05,0.13)

40 (0.08,0.14,0.27) (0.01,0.06,0.29) (0.03,0.10,0.24) (0.02,0.05,0.12) (0.00,0.01,0.03)

ǫz,m 1 (0.02,0.03,0.05) (0.27,0.31,0.36) (0.44,0.49,0.54) (0.00,0.00,0.00) (0.09,0.13,0.17)

5 (0.04,0.07,0.10) (0.17,0.21,0.26) (0.30,0.35,0.41) (0.01,0.02,0.04) (0.01,0.02,0.04)

10 (0.07,0.12,0.18) (0.12,0.15,0.19) (0.21,0.26,0.32) (0.02,0.05,0.10) (0.00,0.00,0.01)

40 (0.26,0.39,0.53) (0.04,0.08,0.13) (0.04,0.14,0.33) (0.00,0.01,0.02) (0.29,0.48,0.63)

ǫ
θ,y,c
t 1 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

5 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

10 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

40 (0.00,0.00,0.00) (0.00,0.01,0.01) (0.00,0.01,0.01) (0.00,0.00,0.00) (0.00,0.00,0.00)

ǫ
θ,y,k
t 1 (0.00,0.00,0.00) (0.00,0.00,0.01) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.01)

5 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.01)

10 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

40 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

ǫ
θ,w
t 1 (0.00,0.00,0.00) (0.03,0.04,0.06) (0.02,0.03,0.04) (0.97,0.98,0.99) (0.04,0.06,0.08)

5 (0.00,0.00,0.00) (0.03,0.05,0.06) (0.03,0.03,0.05) (0.61,0.70,0.78) (0.04,0.06,0.09)

10 (0.00,0.00,0.00) (0.02,0.03,0.05) (0.02,0.03,0.04) (0.28,0.35,0.45) (0.03,0.05,0.07)

40 (0.00,0.00,0.00) (0.04,0.07,0.11) (0.02,0.06,0.10) (0.07,0.09,0.14) (0.00,0.00,0.01)
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Table 3: Variance decomposition: nominal indicators
Shocks Horizon πGDP

t πc
t πk

t Rt

ǫ
ξ,b
t 1 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.01)

5 (0.01,0.01,0.02) (0.01,0.01,0.02) (0.00,0.00,0.01) (0.04,0.06,0.08)

10 (0.01,0.01,0.02) (0.01,0.01,0.02) (0.00,0.00,0.01) (0.08,0.12,0.17)

40 (0.00,0.00,0.01) (0.00,0.00,0.01) (0.00,0.00,0.01) (0.01,0.02,0.04)

ǫ
h,gf
t 1 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.01,0.01)

5 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.01,0.01)

10 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

40 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

ǫ
ξ,b
t 1 (0.02,0.04,0.05) (0.03,0.04,0.06) (0.00,0.00,0.01) (0.00,0.00,0.01)

5 (0.13,0.20,0.28) (0.16,0.24,0.31) (0.00,0.02,0.05) (0.01,0.05,0.12)

10 (0.26,0.36,0.44) (0.30,0.40,0.48) (0.01,0.03,0.08) (0.01,0.04,0.12)

40 (0.61,0.71,0.78) (0.64,0.73,0.80) (0.32,0.48,0.59) (0.62,0.71,0.77)

eR
t 1 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.78,0.83,0.88)

5 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.30,0.35,0.41)

10 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.14,0.18,0.24)

40 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.01,0.01,0.01)

ǫz,k 1 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.04,0.06,0.09) (0.00,0.01,0.01)

5 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.37,0.48,0.58) (0.05,0.08,0.15)

10 (0.00,0.00,0.01) (0.00,0.00,0.00) (0.49,0.62,0.71) (0.06,0.10,0.22)

40 (0.01,0.03,0.09) (0.01,0.02,0.05) (0.17,0.28,0.48) (0.00,0.01,0.04)

ǫz,m 1 (0.09,0.12,0.16) (0.08,0.10,0.14) (0.02,0.02,0.04) (0.00,0.01,0.01)

5 (0.36,0.43,0.51) (0.34,0.42,0.49) (0.12,0.17,0.24) (0.00,0.01,0.03)

10 (0.34,0.41,0.49) (0.32,0.39,0.47) (0.11,0.18,0.25) (0.02,0.05,0.13)

40 (0.14,0.18,0.24) (0.13,0.18,0.24) (0.10,0.14,0.18) (0.12,0.15,0.21)

ǫ
θ,c
t 1 (0.64,0.70,0.74) (0.72,0.77,0.82) (0.00,0.00,0.00) (0.08,0.12,0.16)

5 (0.05,0.07,0.09) (0.05,0.08,0.11) (0.00,0.00,0.00) (0.20,0.25,0.30)

10 (0.00,0.01,0.01) (0.00,0.01,0.01) (0.00,0.00,0.00) (0.08,0.11,0.16)

40 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

ǫ
θ,k
t 1 (0.04,0.05,0.06) (0.00,0.00,0.00) (0.84,0.88,0.91) (0.00,0.01,0.01)

5 (0.00,0.01,0.01) (0.00,0.00,0.00) (0.10,0.13,0.19) (0.00,0.01,0.01)

10 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.01,0.01,0.02) (0.00,0.00,0.00)

40 (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00) (0.00,0.00,0.00)

ǫ
θ,w
t 1 (0.06,0.08,0.11) (0.05,0.07,0.09) (0.02,0.03,0.03) (0.00,0.00,0.01)

5 (0.18,0.24,0.31) (0.16,0.22,0.28) (0.10,0.14,0.18) (0.05,0.09,0.12)

10 (0.13,0.19,0.25) (0.12,0.17,0.23) (0.08,0.12,0.16) (0.15,0.21,0.28)

40 (0.03,0.05,0.07) (0.03,0.05,0.07) (0.03,0.05,0.07) (0.05,0.08,0.11)
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Figure 2: Impulses Responses (Two-Sector Economy)

0

0.1

0.2
Consumption 

ε tξ,
b

−0.5

0

0.5
Investment 

−0.02

0

0.02
GDP Growth

−5

0

5
x 10

−3Wage Inflation

0

0.1

0.2
Agg. Hours

−0.01

0

0.01

ε tA
K

−0.2

0

0.2

−0.5

0

0.5

−2

0

2
x 10

−3

−0.05

0

0.05

−0.1

−0.05

0

ε tξ,
l

−2

0

2

−0.05

0

0.05

−0.02

0

0.02

−0.5

0

0.5

−0.1

0

0.1

ε tR

−5

0

5

−0.5

0

0.5

−0.2

0

0.2

−2

0

2

0 20 40
−2

−1

0

εz,
k

0 20 40
−20

0

20

0 20 40
−0.5

0

0.5

0 20 40
−0.1

0

0.1

0 20 40
−5

0

5

35



Figure 3: Impulses Responses
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Figure 4: Impulses Responses
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Figure 5: Impulses Responses
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Figure 6: Prediction errors and actual data
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Figure 7: Paths of persistent shocks (Two-Sector Economy)
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Figure 8: Output Gap Measures
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Figure 9: Realized and Natural Real Rates
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Figure 10: Real rate gap and fed funds rate paths
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Figure 11: Welfare Surface: Observable Indicators and ρR=0.852.
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Figure 12: Welfare Surface: Unobservable Indicators and ρR=0.852.
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Figure 13: Welfare Surface: Observable Indicators and ρR=1.
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Figure 14: Welfare Surface: Unobservable Indicators and ρR=1.
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