Interbank Market Liquidity and Central Bank Intervention

Franklin Allen University of Pennsylvania Elena Carletti European University Institute Douglas Gale New York University

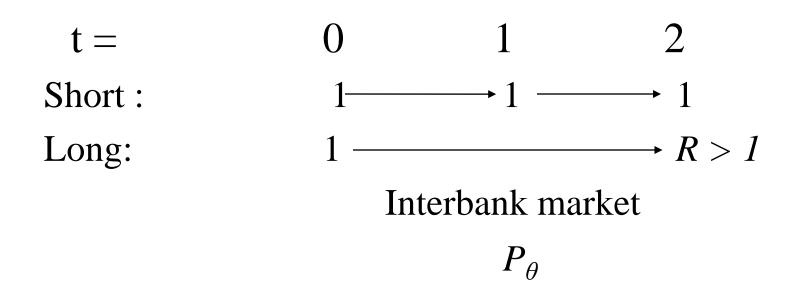
Introduction

- Despite their importance, interbank markets are little studied
 - No clear theory of how they operate and what imperfections they are subject to
- We develop a simple model to study the functioning of interbank markets and the effects of central bank intervention
 - There is no asymmetric information and no bankruptcy

Our paper

- Banks are subject to *idiosyncratic* and *aggregate* liquidity risk
- But they have difficulties in hedging these risk
 Interbank markets are incomplete in this sense
- Market allocations can be inefficient as they lead to excess price volatility
- The central bank can correct this inefficiency through open market operations

The model


- Three dates t = 0, 1, 2, a single good
- Banks are competitive, raise deposits paying $c_1 = d$ at t = 1 and c_2 at t = 2, invest in risk free assets and trade on an interbank market
- Depositors:
 - Measure is 1, each with an initial endowment of 1
 - Utility function $u(c_t)$ for t = 1,2

• Depositors have consumption shocks

$$\lambda_{\theta_i}$$
 consume early at t = 1
1 - λ_{θ_i} consume late at t =2

with
$$\lambda_{\theta i} = \alpha_i + \varepsilon \theta$$

 $- \alpha_i$ idiosyncratic risk, $\alpha_i = \begin{cases} \alpha_H = \overline{\alpha} + \eta & pr. 1/2 \\ \alpha_L = \overline{\alpha} - \eta & pr. 1/2 \end{cases}$
 $- \varepsilon \theta$ aggregate risk, $\theta = \begin{cases} 0 & pr. \pi \\ 1 & pr. 1 - \pi \end{cases}$

• Banks invest y in a short asset and 1 - y in a long asset

- All uncertainty is resolved at t = 1
- Focus on parameter space where there is **no** bankruptcy

Constrained efficient allocation

- A planner chooses *d* and *y* to maximize consumers' expected utility, subject to feasibility constraints
- Idiosyncratic risk does not matter
- Denoting $\lambda_0 = \overline{\alpha}$ and $\lambda_1 = \overline{\alpha} + \varepsilon$:
 - Always enough liquidity: $y^* = \lambda_1 d^* > \lambda_0 d^*$
 - Optimal consumptions c_{20}^* and c_{21}^* vary across states but **not** across banks

Interbank market allocation

- Banks solve a similar problem to the planner but interbank market prices P_{θ} now play an important role
- Banks choose $y = \lambda_1 d > \lambda_0 d$ so that there is excess liquidity in state $\theta = 0$
- $P_0 = R$ so banks hold both assets from t = 1 to 2 $P_1 < 1$ so " " " " t = 0 to 1
- This leads to *inefficient consumption volatility* across banks because of the interaction of price volatility and idiosyncratic risk

Central bank intervention

- The central bank implements the constrained efficient allocation by
 - fixing $P_{\theta} = 1$
 - using open market operations
- There is a lump sum tax X_0 (or issuance of bonds X_1) at t = 0 to fund the central bank's portfolio
- Central bank uses its portfolio to intervene at t = 1 to inject or drain liquidity

Idiosyncratic risk only ($\eta > 0$, $\epsilon = 0$)

- *Date 0*:
 - CB buys $X_0 = 1 d^*$ of short asset
 - Banks choose $y^* X_0$ of short and $1 y^*$ of long asset
- *Date 1*:
 - CB sets P = 1 by buying X_0 of long asset
 - Bank i covers liquidity need $y^* X_0 \lambda_i d^*$ by selling long asset

• Date 2: - Banks pay $\frac{(1 - y^* + y^* - X_0 - \lambda_i d^*)R}{1 - \lambda_i} = d^*R$ - Lump sum grant $\frac{X_0 R}{1 - \lambda}$ $\mathbf{X} \cdot \mathbf{R} = (1 - y^*) \cdot \mathbf{R}$

- Total consumption
$$d^*R + \frac{X_0R}{1-\lambda} = \frac{(1-y)R}{1-\lambda} = c_2^*$$

- Consumption at t = 2 is the same for depositors at all banks so idiosyncratic risk is eliminated
- Opposite interpretation if $d^* > 1$
 - Security replicating short asset granted at t = 0 ("money")
 - Security replicating long asset issued at t = 1
 - Lump sum tax at t = 2

Aggregate risk only ($\eta = 0, \epsilon > 0$)

- *Date 0*: Banks choose y^* short and $1 y^* \log x$
- State θ = 0
 Date 1: CB sets P₀ = 1 by selling to banks X₁ = εd^{*} of security replicating long asset
 Date 2: Lump sum tax and consumption c^{*}₂₀
- *State* $\theta = 1$: no CB intervention

Both risks ($\eta > 0, \epsilon > 0$)

- Interventions above can be combined to achieve the constrained efficient allocation
- Markets "freeze" (banks stop trading with each other) in state $\theta = 0$ if $\varepsilon > \eta$ but this is constrained efficient if the central bank is intervening optimally as above

Concluding remarks

- Central bank intervention allows the market failure arising from incomplete opportunities to hedge liquidity risk to be corrected
- It does so by fixing interest rates (asset prices) and conducting open market operations
- We have shown this in the case of no bankruptcy