A Model of Central Bank Liquidity Provision

James T.E. Chapman¹ Jonathan Chiu¹ Miguel Molico¹

¹Bank of Canada

BANK OF CANADA 19 February 2009

イロト イポト イヨト イヨト

POLICY QUESTIONS

When a central bank provides liquidity through collateralized loans (e.g. intraday central bank liquidity, overnight liquidity facility) such as in the Canadian case through SLF or SPRA/SRA:

- How should it design its collateral policy?
- In particular, how should it determine its haircut policy?

イロト 人間ト イヨト イヨト

Introduction Moddel Equilibrium Effects of Lowering The Haircut Conclusion

WHAT ARE "HAIRCUTS"?

Borrowing Constraint: $L_t \leq A_t \psi_t (1 - h)$ where L: loans, A: asset, ψ : asset price, h: haircut

MOTIVATION

Research into haircut policy is motivated by the following questions

- What is the essential trade-off involved in setting haircuts?
- What are the equilibrium effects of changing haircuts?
- What are the welfare implications of collateralized lending policy?
- What are the key factors that determine an optimal haircut? (e.g. collateral types, borrowers, lending mechanism)

イロト 人間ト イヨト イヨト

MOTIVATION

PAYMENT SYSTEMS all transactions in most settlement systems are subject to "collateral-in-advance" constraints LIQUIDITY PROVISION Central banks need guidance for their collateral policy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Develop A Tractable Model of Liquidity Provision in a Settlement System

Four building blocks:

- 1 Portfolio choice: liquid vs illiquid assets
- **2** Uncertain liquidity needs \Rightarrow CB liquidity provision
- **3** Potential for default \Rightarrow Collateral requirement
- **4** Asset price uncertainty \Rightarrow Haircuts

FINDINGS

- A central bank liquidity facility is a portfolio of two types of insurance:
 - 1 Insurance against liquidity risk
 - 2 Insurance against downside risk of asset
- Setting a haircut involves a trade-off between:
 - Relax liquidity constraint of illiquid agents
 - Tighten liquidity constraint of liquid agents through:
 - 1 Lower value of liquid asset
 - 2 Increased opportunity cost of holding liquid asset
 - 3 Distortion of the portfolio choice
 - The optimal haircut is higher when:
 - Default incentives and portfolio choices respond strongly to haircut change
 - Volatility of asset prices is higher
 - Unable to target lending to agents who really need liquidity

イロト 不得下 イヨト イヨト 二日

Model

- Time is discrete: *t* = 0, 1, 2,
- Continuum of infinitely lived agents
- Three consecutive sub-periods (denoted by *s*):

AM centralized asset market (portfolio choice) (s = 1)DM decentralized goods market (liquidity need) (s = 2)CM centralized market (settlement) (s = 3)

Preference

Period utility of an agent

$$u(q_2^b)-q_2^s-h_3,$$

where

- q_2^b : consumption of the DM goods when the agent is a buyer
- q_2^s : production of the DM goods when the agent is a seller
- *h*₃: production (net of consumption) of the CM goods
- β: discount factor

イロト イポト イヨト イヨト

Portfolio: Money and Asset

- *M_t*: liquid asset (e.g. fiat money/ bank reserves)
 - exogenous growth rate γ
- *A_t*: illiquid asset (e.g. claims to investment projects)
 - endowed with A projects at the beginning of a period
 - each unit yields δ_t units of CM goods at the end of a period
 - δ is a random i.i.d. (over time and across owners) variable: $\delta_t \sim U(\bar{\delta}(1-\varepsilon), \bar{\delta}(1+\varepsilon))$, and with $\bar{\delta} < 1$
 - Price of asset: $\psi_s, s = 1, 2, 3$

イロト イポト イヨト イヨト 二日

SUB-PERIOD 1: ASSET MARKET AM

- An agent starts with (m_1, A) and receives signal $S \in \{H, L\}$:
 - H: likely to become a buyer in the DM (high liquidity need)
 - L: likely to become a seller in the DM (low liquidity need)
- Given the signal, agents trade in AM and make portfolio choice (m_2, a_2)
- The signal turns out to be incorrect with a probability $\theta < \frac{1}{2}$
 - an agent with H signal will be a buyer with prob. $\sigma^{H} = 1 \theta$
 - an agent with L signal will be a buyer with prob. $\sigma^L = \theta$

< ロ > < 同 > < 回 > < 回 > < 回 > <

SUB-PERIOD 2: DECENTRALIZED TRADING DM

An agent starts with (m_2, a_2)

- The trading status realizes: buyer or seller
- Trading subject to liquidity constraint (only *m* is accepted)
- Before trade, agents have access to central bank lending facilities:
 - Borrow a nominal loan I_2 by posting asset as collateral
 - The loan has to be settled in the next CM

SUB-PERIOD 3: SETTLEMENT CM

- An agent starts with (m_3, a_3, l_2) , and δ_t is realized
- Agents decide whether to settle the loan I_2 or to default
- Agents trade h_3 , and choose m_{+1} for next period

イロト イポト イヨト イヨト

INTRODUCTION MODEL Equilibrium Effects of Lowering The Haircut Conclusion

REDUCING THE VALUE OF HOLDING LIQUID ASSET

MC of liquidity = MB of liquidity

$$\phi_3(1+i) = \frac{1}{2}(\lambda^H + \lambda^L)$$

where

$$egin{aligned} \lambda^{H} &= \phi_{3}(1+\sigma^{H}\Delta^{H})\ \lambda^{L} &= rac{ar{\delta}}{\psi_{1}}\{1+\sigma^{L}[\Delta^{L}(h)+S(h)](1-h)\}\ \Delta^{j} &= u'(q^{j})-1\ q^{H} &= 2M\phi_{3}\ q^{L} &= 2Aar{\delta}(1-h) \end{aligned}$$

 $\begin{array}{ll}h\downarrow \Rightarrow q^L \uparrow \Rightarrow \Delta^L \downarrow (\text{relax } L\text{-type liquidity constraint})\\ \Rightarrow \lambda^L \downarrow \Rightarrow \phi_3 \downarrow \Rightarrow q_H \downarrow (\text{tighten } H\text{-type liquidity constraint})\end{array}$

INCREASING THE OPPORTUNITY COST OF HOLDING LIQUID ASSET

Fisher's equation
$$1 + i = \frac{\gamma}{\beta} \ge \frac{\sigma^{L}A}{\beta M} E[S(h)] + \frac{1}{\beta}$$

where $E[S(h)] = \frac{\overline{\delta}}{4\phi_{3}\varepsilon}(\varepsilon - h)^{2}$

 $\begin{array}{ll}h\downarrow &\Rightarrow & \mathsf{E}[S(h)]\uparrow(\text{insure against downside risk})\\ &\Rightarrow & \gamma\uparrow\Rightarrow i\uparrow\Rightarrow\phi_{3}\downarrow\Rightarrow q_{H}\downarrow(\text{tighten }H\text{-type liquidity constraint})\end{array}$

INTRODUCTION MODEL Equilibrium Effects of Lowering The Haircut Conclusion

DISTORTING PORTFOLIO CHOICE

$$\phi_3(1+i) = \frac{1}{2}(\lambda^H + \lambda^L)$$

where
$$\lambda^L = rac{ar{\delta}}{\psi_1} \{1 + \sigma^L (\Delta^L(h) + S(h))(1-h)\}$$

 $\begin{array}{rcl}h\downarrow &\Rightarrow& \text{induce H-type to hold more illiquid asset}\Rightarrow q_{H}\downarrow\\ &\Rightarrow& \psi_1\uparrow\Rightarrow\phi_3\downarrow\Rightarrow q_{H}\downarrow \text{(tighten H-type liquidity constraint)}\end{array}$

イロト イポト イヨト イヨト 三日

CONCLUSION

We have developed a model of collateralized central bank lending and shown the:

- 1 Equilibrium effects of reducing haircuts
 - $h \downarrow \Rightarrow$ provide liquidity insurance

$$h\downarrow \ \Rightarrow \ ({\sf i})$$
 lower value of liquid asset

- $\Rightarrow~$ (ii) increase opp. cost of holding liquid asset
- \Rightarrow (iii) distort portfolio choice
- Optimal haircut is lower if
 - Downside risk of collateral is low [small (ii)]
 - Perfect enforcement [no (ii)] or exogenous default [small (ii)]
 - CB can target lending to agents really in need of liquidity [small (ii)]
 - Portfolio choice insensitive to haircut change [small (iii)]
 - It is an unanticipated, temporary cut in h [no (i), (iii), small (ii)]