Federal Reserve Bank of New York

33 Liberty Street, 10 ${ }^{\text {th }}$ Floor, Benjamin Strong Room
Friday November 1, 2013

Managing the Risk of Catastrophes: Protecting Critical Infrastructure in Urban Areas Session 4: Risks to NYC and Mitigation Strategies

3:30-4:30 PM: K. Jacob, C. Rosenzweig, S. Pinsky.

Klaus H. Jacob

Lamont-Doherty Earth Observatory \&
School of International and Public Affairs, Columbia University
jacob@ldeo.columbia.edu

Key Points Upfront (taken from my pre-Sandy Talk to NYC DDC):

Climate Change will

- Increase number of hot days + strong wind storms
- Increase excessive rains (more street flooding, CSOs)
- Accelerate sea level rise (SLR) to reach $\approx 5 \pm \mathbf{1} \mathbf{f t}$ by 2100, + more later!
- Will Combine SLR with
a) Nor'easter winter storms, and
b) Hurricanes (tropical cyclones) to more often \& more severely flood the Region's Waterfront \& Infrastructure, thereby increasing by 2100 the annualized risks by at least factors of $\mathbf{1 0}$, unless mitigated.

Key Points Upfront (taken from my pre-Sandy Talk to NYC DDC):

 Recommendations:- City, State \& FEMA need to update Flood Zone Maps (and add freeboard for SLR, \& apply to infrastructure)
- City needs to change Building Codes \& Zoning
- City Planning needs to become more SLR proactive
- FEMA NFIP rates => risk consistent (NY can help)
- City \& Communities need to develop a long-term SLR-Vision (to 2100 and beyond !!)
- Mandatory CC Risk Disclosure for Infrastructure Bonds (=> S.E.C. CC Securities Disclosure Guidance of Feb 8, 2010)

What Kinds of Perils / Risks is NYC Exposed to?

- Economic Downturns
- Vulnerable / Aged Infirastructure
- Water •Energy •Transport OWaste - Telecom
- Health / Environment / Industrial Accidents
- Terrorism
- Earthquakes / Tsunamis
- Climate and Weather
- Temperature / Heatwaves / Droughts IP NPP
- Wind (Gusts, Tornadoes)
- Rain (Urban Street Flooding, CSOs)
- Storms (Hurricanes, Nor'easter, Coastal Floodls)_>
- Sea Level Rise, Coastal Inundation

Sea-level pressure (mb) / surface wind speed (kts)

MTA Storm Preparations, Downtown Subway Grates / 144 ${ }^{\text {th }}$ St Subw. Tunnel / Penn Station LIRR yard

Many Excellent Studies \& Reports, but Limited Action \& Adaptation \$\$'s Invested as of today, although some in the pipeline.

ST $100-y$ flood in 2000 (surge of - 8ft)

\square 100-y flood in 2010s, with +2fit SLR
\square 100-y flood in 2080s, with +4 ft SLR ClimAID Study: Chapter 8 - Transportation.

Flooded Subway and Under-River Tunnels, Lower Manhattan, 1\% Flood (length overflow)

Legend
 Stations

Ventilation openings (data provided)
100 Year Flood
0 Enters
100\% Enters
Under River Tunnels (data provided)
100 Year Flood
100 Year Flood
0% Flooded
100\% Flooded
Subway tunnels below Houston St (data provided) 100 Year Flood
00%
42%
-100%
= Added length for volume overflow

Hydraulic Computations show:
Flooding Complete in ~ 40 minutes !

ClimAID Study: Chapter 8 - Transportation. (Jacobet al, December 2011)

ClimAID Study: Chapter 8 - Transportation. (Jacob et al. December 2011)

- What is the expected direct damage from the 100 yr flood to the transportation infrastructure? ~ \$ 10 Billion
- How long will it take for the various components of infrastructure to have their services restored?
~ 3 weeks (at ~ \$ 4 B/day =>)
- What will be potential economic losses from the transportation / utility outages and extended restoration times?
~\$50 B (+ Losses to Building Stock)

NPCC >ClimAID 2011:

Identify Options for Solutions:

Example: Subway System:

1. In flood zones, seal ventilation street grates, replace passive 'open' ventilation with forced 'closed' ventilation. Requires additional ventilation fan plants, and $\$ \$ \$$.
2. Flood gates at vulnerable entrances; or berms / levees:
"Taipei-Solution"- Go up before you step down!
3. Costs? Engineering designs getting gradually underway, Our Estimate: at least 25% of the expected avoided losses:
i.e. in excess of $\$ 12$ Billion.

Or: Build barriers to protect the entire NY Harbor and Estuary. But is this an effective and sustainable solution?

3 Barriers; or I big \& I regular, Is this cost-beneficial \& sustainable ?

3 Basic Modes of Adaptation:

- Protection

- Accommodation
- Strategic Retreat

Missed Opportunities: Example - WTC - Site:

Questions
(Presented to PANYNJ in 2007):
Can the West-Tub Flood?
Can the East Tub Flood?
For which Storm Surge Elevations?
How will Flooding affect PATH System?

- Hudson Tunnels
- Stations / Tracks / Control Systems
- New Transportation Hub?
- For how Long?

Will Flooding of NYCT Subway System(s) Affect / Connect with PATH \& WTC facilities?

If Answers to Above are YES:

What Sealing-Off Options Exist?
What Pumping Facilities are Planned? Where? Capacity? Reliability ?

Is a Levee System || to West Street Feasible? Up to what Height? How long would it be effective, given SLR.

A STRONGER, MORE RESILIENT NEW YORK

Conclusions / Suggestions for the Region (1 of 2):

1. Make time-dependent risk-based Benefit/Cost

Assessments using updated Probabilistic Flood Maps by accounting for changing Physical Asset- and Social Vulnerabilities as a Function of SLR (i.e. for various time horizons according to expected asset life times).

1. Develop Regional SLR Adaptation Policy/Strategy and Regional SLR Plans that balance the merits from Temporary Protection, with Medium-Term Accommodation to rising waters, with Long-Term Sustainable Managed Retreat to safe spaces - by combining Risk-Based Landuse and Urban Design, Insurance Pricing, Rezoning, Code Improvements, Financial and Tax Incentives, BuyOut Trust Funds, with Market-Driven Risk Averseness while taxing SLR-risk-prone Developments.

Yel 100y flood +2 ft SLR

 100 y flood $+4 f$ t SLRConclusions / Suggestions for the Region (2 of 2):
3. Incorporate the CC information \& Probabilistic Risk Estimates for Various Time Horizons into all strategic planning and capital-spending decisions.
3. Use each CC + SLR Challenge as Opportunity for Infrastructure and Urban Renewal. The costs for the next few decades will be upward of $\$ 100$ Billion. But not investing in resilience measures will be more expensive.
3. Ensure robust interim Operational Emergency and Business Continuity Plans until assets can be engineered to be CC \& SLR resilient to minimize impact and losses, and allow for expedient recovery.

Timing makes a Difference.

