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Abstract 

The 2010s saw a profound shift towards jumbo mortgage lending by large banks that are regulated under 

the Dodd-Frank Act. Using data from the Home Mortgage Disclosure Act, we show that the “jumbo 

shift” is correlated with being subject to the Comprehensive Capital Analysis and Review (CCAR) stress 

tests, and that financial regulation caused CCAR-regulated banks to change preference for nonconforming 

relative to conforming loans of similar size. We discuss potential mechanisms through which regulation 

could have affected bank incentives. 
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1 Introduction

Mortgage lending is a core business for most banks, and a core subject of their reg-

ulation by the government. An essential aspect of mortgage finance in the U.S. is

the existence of Government-Sponsored Enterprises (GSEs) that commit to purchas-

ing all mortgages originated by banks that satisfy particular widely shared criteria.

The existence of the GSEs provides an implicit (and, after the 2008 financial cri-

sis, essentially explicit) guarantee by the government to the banks for a large class

of mortgages, which is critical in overcoming the adverse selection problem in the

mortgage lending market.

One of the criteria used by the GSEs is that the size of the mortgage

is below a certain cutoff, known as the conforming loan limit (CLL), and which

was $417,000 in 2016 for most areas of the U.S. Loans below this cutoff are known

as “conforming” and may be purchased by the GSEs. “Jumbo” loans above this

threshold are ineligible to be purchased by the GSEs, but can be securitized by

private entities if banks do not wish to retain them on their books. Historically,

most mortgage loans made in the U.S. by large and small banks alike have been

conforming loans, with jumbo loans accounting for less than 10% of all mortgage

originations. This jumbo share rose to 15% during the housing boom of the mid-2000s

and declined to nearly zero during the financial crisis and and collapse of the private

securitization market. (Calem et al. 2013). While jumbo lending has rebounded

since the crisis, the recovery has been starkly bifurcated as shown in Figure 1. Large

banks subject to CCAR (Comprehensive Capital Analysis and Review) stress tests

under the Dodd-Frank Act (DFA) of 2010 increased their jumbo share to well above
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the peak in 2005 while the share at non-CCAR banks remains below the peak.

In this paper, we explore explanations for these diverging trends. First, we

document that indeed, participation in CCAR is correlated with jumbo share, even

conditional on bank size. We also show that the banks that participated in CCAR

begin their shift towards jumbo loans only in the 2010s, after financial regulation

(Dodd-Frank Act) is passed. However, looking at the jumbo share alone does not

allow us to distinguish a greater preference for nonconforming loans from a greater

preference for loans that are large. In particular, d’Acunto and Rossi (forthcoming)

present a compelling argument that an increase in fixed and per-loan regulatory costs

incentivized larger banks to make larger loans generally, although not jumbo loans

in particular.

Building on the results of d’Acunto and Rossi (forthcoming), we attempt

to measure the association between CCAR and lending in the jumbo market while

controlling for this fixed cost story. To do so, we exploit the fact that for most

banks (and nearly all banks before Dodd-Frank), the mortgage size distribution

reflected pronounced bunching at the CLL, with borrowers and lenders facing strong

incentives to issue conforming loans in place of jumbo loans marginally above the

CLL. Considering the amount of bunching at the CLL allows us to focus explicitly on

the decision to issue a nonconforming loan relative to a conforming loan of a similar

size. We find that bunching at the CLL has noticeably decreased for the CCAR banks

after Dodd-Frank. This finding suggests more precisely that financial regulation

changed regulated banks’ preference for jumbo mortgages specifically rather than

large loans more generally.
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Subsequently, we explore possible mechanisms whereby stress tests or other

financial regulation under the Dodd-Frank Act (DFA) of 2010 may have driven the

jumbo shift. We exclude a number of plausible stories related to the direct effects

of stress test results (Cortes et al. 2017) and to balance sheet capacity (Buchak et

al 2018). We also document that it was the set of banks subject to CCAR stress

tests, rather than the larger set of banks subject to DFA stress tests or the smaller

set of banks subject to Global Systemically Important Bank (GSIB) regulation that

accounts for the jumbo shift. One channel through which part of the jumbo shift

may have operated may be the Liquidity Coverage Regulation rule imposed on a

very similar set of banks to the one covered by CCAR, although our evidence for this

channel is not conclusive. To assess the stability implications of the jumbo shift, we

also run a difference-in-difference analysis of the association between CCAR and the

performance of banks’ mortgage loan portfolios and find that the mortgage portfolios

of CCAR banks have fewer nonperforming loans by volume, but not statistically

significantly so.

Our paper contributes to a substantial body of research investigating the

impact of stress testing. One strand of the literature considers whether test results

help inform investors about the risk and value of large, potentially opaque, banks

(Petrella and Resti (2013), Morgan et al. (2014), Candelon and Amadou (2015),

Bird et al. (2015), Neretina et al. (2015), Flannery et al. (2017), Marcelo et al.

(2020). Most find that bank asset prices respond to stress test news. Our paper is

more related to a second vein of literature that studies the credit allocation effects of

stress testing. Cortez et al. (2017) find that, among CCAR banks, those with lower

4



capital ratios in stress scenario shift away from small business lending. Acharya and

Berger (2018) find that CCAR banks rebalanced their portfolios toward safer loan

classes broadly. Calem, Correa and Lee (2021) look specifically at jumbos and find

that jumbo origination by CCAR banks fell after the first CCAR test but were not

significantly affected by subsequent stress tests. Our paper complements theirs by

focusing on differentials in the trends of jumbo mortgage origination, rather than

changes following specific stress tests.

The rest of the paper is organized as follows. Section 2 describes the data.

Section 3 presents the baseline jumbo share results. Section 4 provides a straightfor-

ward model of banks choosing what size loans to originate, which formally motivates

the bunching specification. Section 5 presents the baseline bunching results. Section

6 explores the potential mechanisms. Section 7 concludes.

2 Data

2.1 Mortgage Loan Data

We use data collected pursuant to the Home Mortgage Disclosure Act (HMDA) to

examine how lending patterns changed due to the introduction of the CCAR stress

tests. The HMDA dataset includes mortgage application data as reported by mort-

gage lenders for approximately 80% of home lending that occurs in the United States,

including, crucially, year of origination, mortgage size, location of the property and

institution that originated the loan. We match that loan-level information to the

parent of the bank that originated the mortgage using the HMDA lender file created
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by Robert Avery of the Federal Housing Finance Agency for the institutions that

originated each loan. Avery et al. 2007 suggest that HMDA likely offers a represen-

tative and nearly complete sample of home lending in the U.S. Additionally, HMDA

includes data on loan securitization – specifically, whether or not the originator of

the loan has sold it to a third party by the end of the calendar year in which the loan

was originated. We use a subsample of the HMDA dataset consisting of first-lien

purchase loans on single family home equivalent properties, originated between 2000

and 2016.

We match each loan with the conforming loan limit (CLL) prevailing in the

county in which the property was located at the time of origination. The CLL is the

maximum size of a loan that may be sold to Fannie Mae and Freddie Mac. Loans

that exceed the CLL are known as “jumbo” loans, and will generally be kept on

the books of the originating institution (before the financial crisis of 2008, they also

could be securitized by private entities). Loans at or below the CLL are known as

“conforming” loans. We believe the effect of CCAR may differ between the “jumbo”

and “conforming” loan markets, so we use the CLL to classify loans into these two

categories. Historical CLL data is publicly available from Fannie Mae and the Federal

Housing Finance Agency. In 2016, the CLL was $417,000 in most of the country, with

the exception of high-cost counties where the CLL could be set between $417,000

and $625,500, depending on the local median home value .

Our main object of analysis will be the distribution of loan volume by

lender. For each institution in HMDA, we compute the number and volume of loans

made each year in bins of $30,000 around the CLL. That is, for each lender we count
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the number (and volume) of loans made between $29,999 and $0 below the CLL,

between $1 and $30,000 above the CLL, between $30,001 and $60,000 above the

CLL, etc. We collapse the dataset to the lender-year-bin level.

2.2 Lender Data

We collect annual financial information (total assets, tier 1 capital ratio, non-performing

residential real estate loans, total real estate loans) on the bank holding companies

(BHCs) in our sample from the FR Y-9C, FR Y9-LP, and FR Y-9SP financial re-

porting forms. For our sample, we consider only the institutions that reported assets

in 2010 (the year before CCAR), which leaves us with 912 BHCs.

For each BHC subject to stress testing under CCAR, we use the minimum

level achieved by the Tier 1 Capital Ratio, Total risk-based Capital Ratio, and Tier 1

Leverage Ratio from the 2012-2016 stress test cycles that are made publicly available

by the Federal Reserve System. The data for 2012 is from the Fed’s CCAR disclosure

of the results that do not include the bank’s capital plan, and for 2013-2016 is

from the Dodd-Frank Act disclosure. Following Cortés et al. (2018), we construct

measures of exposure to the stress tests based on how close each bank’s minimum

capital ratios were to the regulatory minimum – essentially, how close the bank was

to failing the stress tests. We also use data on liquidity stress ratios from the stress

tests.
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3 Results for the Jumbo Share

In this section, we provide empirical evidence that bank regulation played a role in

the sorting of regulated banks to jumbo mortgages relative to other banks. We first

analyze the behavior of the jumbo share. To do so, we run the following specification

JumboShareb,t = αb + αt + γCCARb,t + β3 ln (Ab,t) + λt × ln (Ab,2010) + εi,t (1)

where JumboShareb,t is the share of mortgages originated by bank b in

year t that were jumbo, αb and αt are bank and year fixed effects and CCARb,t is

an indicator variable for whether bank b was ever subject to CCAR stress tests and

whether the year is after or including 2011, when CCAR stress testing became a

permanent fixture of the regulatory landscape. We include several controls in this

baseline specification to ensure that our results are not driven by changes in bank

size over time. First, we control for the logarithm of Ab,t, the total assets of bank

b in year t. Second, because the relationship between a bank’s size and its jumbo

share may be changing over time – purely economic and not regulatory reasons may

have made it make sense for large banks to specialize in jumbo lending in the 2010s

but not in the 2000s – we also control for the log of total assets of bank b in 2010,

interacted with another set of year fixed effects λt. Our identification assumption

is that conditional on these controls, the timing of a bank’s entry into CCAR was

exogenous to other unobserved determinants of its jumbo share. Appendix Table A2

presents estimates that also control for average loan size, which are similar.

We present our estimation results in Table 1. In Column 1, we display
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estimates of equation (1). We double-cluster standard errors by bank and year to

account for correlation of errors within banks, and for common shocks to all banks

in any given year. Our main interest is γ, the coefficient on the CCAR indicator

variable. We estimate this coefficient to be 0.065 with a standard error of 0.019,

and statistically significant at 1%. This coefficient is positive, suggesting that as

banks entered CCAR, their jumbo share increased by 6.5 percentage points relative

to banks that did not enter CCAR. It is also large, as the mean jumbo share of banks

in the mortgage market is 14%.

It is useful to see the precise timing and nature of the evolution of the jumbo

shift among CCAR relative to non-CCAR banks during the recovery from the Great

Recession. Figure 2 presents estimates from a version of specification (1) in which

the coefficient γ is interacted with year fixed effects, thus generating an estimate γt

for each year t indicating how much larger the jumbo share was for the ever-CCAR

banks relative to the non-CCAR banks in year t. (Since our definition of CCAR is

whether a bank was ever in CCAR, it is well-defined to compute this coefficient for

the time period before CCAR was enacted.) Without loss of generality, we normalize

the value of γt in 2010 to zero, so that estimates of γt can be thought of as the increase

or the decrease in the jumbo shift of the ever-CCAR banks relative to 2010. We see

that before 2010 – the implementation of major financial reforms including CCAR

following the crisis of 2008 – the parameters γt are flat at zero, indicating no trend

for the banks that were ever in CCAR to experience a shift to jumbo lending over

time. It is particularly impressive that this trend is so flat during the financial boom

and bust leading up to and culminating in the financial crisis of 2008, during which

9



many macroeconomic and financial variables behaved very cyclically. However, after

2010, γt grows steadily, attaining a value of greater than 0.10 by 2016 and averaging

around 0.05 during this period. Hence, it appears that the jumbo shift was not a

result of trends originating during the financial crisis of the 2000s, but rather a sharp

response to something taking place in the early stages of the recovery, and in 2010

in particular. This is evidence that the jumbo shift might be attributable to the

regulatory changes implemented after the crisis, possibly including CCAR.

In subsequent columns of Table 1 we perform robustness checks on the

baseline result that regulation in 2010 played a role in the jumbo shift. First, in

column 2, we show that replacing our treatment variable with a straightforward,

time-varying dummy for whether bank b was in CCAR in year t does not affect

the magnitude or significance of our estimate. We prefer using the ”ever CCAR”

dummy going forward, as there could be potential endogeneity in the timing of

bank entry ginto CCAR, and as difference-in-difference estimates with variation in

treatment timing typically do not recover the pure average causal effect (Goodman-

Bacon 2021). Another concern could be that banks that entered CCAR had different

geographical lending patterns, leading them to be differentially exposed to housing

market recovery patterns than non-CCAR banks. To test this concern, in column

3, we control for the distribution of lending of bank b in year t across counties

by the extent of their housing market recovery, specifically for loan-weighted and

volume-weighted average house price indices and for the shares of loans by number

and volume made in counties where the CLL was above the minimum CLL set in

HERA 2008, which was approximately $417,000 in 2017 dollars (see Section 2). The
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coefficient is statistically significant and larger than in the baseline specification.

In column 4 we implement a more thoroughgoing robustness check by in-

cluding bank-specific linear time trends, which decrease the CCAR coefficient to a

statistically insignificant 0.035, still a sizeable magnitude with the confidence inter-

val including the original estimate. It is worth noting that a criticism of this test

may be that bank-specific time trends may mechanically absorb some of the effect

of any post-2010 reforms if it takes time to be realized. In the next two columns, we

assess what happens if we draw a control group of non-CCAR banks that is more

comparable to the 30 CCAR banks in our analysis. First, in column 5, we limit the

sample to the CCAR banks and the 30 largest non-CCAR banks by asset size in

2010. Doing so decreases the coefficient on the CCAR dummy to 0.029 and increases

its standard error to 0.019, making it statistically insignificant, but similar in mag-

nitude to the coefficient when lender linear trends are included. Second, in column

6, we perform our analysis on the 15 largest non-CCAR banks and the 15 smallest

banks that are ever part of CCAR, also according to 2010 assets. The coefficient

rises to 0.1, with a standard error of 0.075. While these last three robustness checks

move the coefficient on the CCAR dummy, they are also very restrictive in allowing

considerable heterogeneity in bank behavior over time and in narrowing the sample

down to very small but comparable groups of banks. Lastly, in column 7, we perform

a placebo exercise in which we remove the banks that were ever part of CCAR from

the sample and label the 30 largest non-CCAR banks as “ever CCAR”. We see that

there is no effect after 2010 on the jumbo share of these next thirty banks relative

to the smaller non-CCAR banks in our panel.
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4 Theoretical Analysis of Bunching at the CLL

4.1 Motivation for Bunching Analysis

While the jumbo share remains our primary object of interest motivated by Figure 1,

we also consider a more targeted measure of the way in which banks trade off making

jumbo loans against making conforming loans. This is the degree of bunching at the

conforming loan limit exhibited by each bank’s size distribution of loans. As loans

just below the CLL are almost the same size as loans just above the CLL, the extent

of bunching should not reflect preference for larger or smaller loans, but should be

closer to the opportunity cost of issuing a loan that is treated like a jumbo by housing

market institutions relative to a loan that is treated like a conforming loan (e.g. by

the GSEs). Showing an effect of CCAR on the extent of bunching at the CLL would

suggest that CCAR affected this opportunity cost of jumbo lending, and therefore

further strengthen the case that CCAR had a causal effect on the jumbo share of

regulated banks.

Bunching at the CLL has been explored in previous literature on the mort-

gage market. DeFusco and Paciorek (2017) use the techniques of Kleven and Wasseem

(2014) to estimate an elasticity of mortgage demand to interest rates using the

bunch at the CLL and the corresponding jumbo to conforming interest rate spread.

d’Acunto and Rossi (forthcoming) note that for large banks, bunching at the CLL

has practically vanished in the 2010s, and argue that this is because the fixed costs

of originating a loan for large banks have risen with regulation, incentivizing them

to originate larger loans. However, raising fixed costs of originating a loan should
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not affect the incentives of banks to make a loan just below a certain value rather

than just above.

Below we provide a model that reflects the intuition of d’Acunto and Rossi

(forthcoming) that larger per-loan fixed costs should induce banks to seek out larger

loans. Subsequently, we show that the jumbo share specification in Section 3 does

not control for this channel. Therefore, if the only effect of CCAR were to increase

per-loan fixed costs, we would expect to see the results that we observe in Section

3. However, under the model provided below, we show that a specification that

regresses the log number of loans at the bunch on the CCAR indicator and controls

for the distribution of conforming loans made by the bank in question should control

for this “fixed cost story”. Specifically, the coefficient on the CCAR indicator in such

a regression should be equal to zero if the only effect of CCAR is to increase per-loan

fixed costs.

4.2 Bank’s optimization problem

Let’s suppose that a bank that must lend conforming loans at rate r and jumbo

loans at rate r+ρ. We also assume the bank incurs a per-loan regulatory cost K and

an additional per-loan regulatory cost κ for jumbo loans. An increase in K can be

interpreted as a general increase in regulatory burden, while an increase in κ can be

interpreted as a jumbo-specific regulatory increase, or as an increase in the benefits

of securitization, such as lower g-fees.

We assume that the bank faces a mortgage loan distribution F (m). Then,
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for a mortgage of size m, the bank’s profit from originating this mortgage is

π (m) = rm−K + 1 (m > m̄) (ρm− κ)

We assume that all mortgages are above a level m0 such that rm0 > K + κ

for all conceivable values of r, K and κ, so all mortgages bring positive profit to the

bank.

Now, we assume that the bank takes r and ρ as given, but that it is costly for

the bank to attract mortgage applications. In particular, to attract t (m) applications

for mortgages of size m, the bank needs to spend c (t (m)), a convex cost function.

This structure is a reduced-form way of capturing the fact that banks may market

mortgages more intensely in some areas and some market segments rather than

others. Other interpretations of t (m) may be hiring additional staff to work with

different ends of the mortgage market, in which case costs might be linear but returns

might be concave. Anecdotal evidence from bank supervision officers indicates that

some major banks did expand their wealth management divisions.

The bank’s optimization problem then becomes

max
t(m)

∫ ∞
m0

(π (m) t (m)− c (t (m))) dF (m) (2)

The first-order condition is then

c′ (t (m)) = π (m) = rm−K + 1 (m > m̄) (ρm− κ) for each m
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Notably, t (m) is left-continuous at m̄, with a jump immediately to its right.

Differentiating the first-order condition in K and in m, we obtain

∂t (m)

∂K
= − 1

c′′ (t (m))
< 0 (3)

∂t

∂m
= r + 1 (m > m̄) ρ > 0 (4)

Note that equation (4) implies that t (m) is increasing in m, except possibly

for a discontinuous downward jump immediately to the right of m = m̄. However,

for m large enough, it must be the case that π (m) > π (m̄), or it would not be profit

maximizing for the bank to make jumbo loans. Therefore, t (m) is increasing for m

large enough.

Consequently, for each mortgage level m, the bank originates t (m) dF (m)

loans, and the empirical distribution of loans has the form

F̃ (m) =

∫ m
m0
t (s) dF (s)∫∞

m0
t (s) dF (s)

It follows that if c′′′ > 0 and m is large enough, then

∂F̃ (m)

∂K
≤ 0

because t (s) is increasing in s and 1/c′′ (t (s)) is decreasing in s over the

interval (m,∞) for m large enough.1 Recall that the ”fixed cost story” of d’Acunto

1
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and Rossi (forthcoming) is driven by changes to loan volumes for mortgage levels

well above and well below the CLL.

Therefore, this model exhibits the ”fixed cost story” of d’Acunto and Rossi

(forthcoming), because an increase in per-loan fixed costs shifts the CDF of originated

mortgages to the right.

4.3 Implications for regression specification

Therefore, a specification of the type

Jb,t = γCCARb,t + εi,t (5)

where Jb,t is the jumbo share would fail to capture the endogenous effects

of changes in t (m) as we would measure

Jb,t =

∫∞
m̄
t (m) dF (m)∫∞

m0
t (m) dF (m)

= 1− F̃ (m̄)

In general (e.g. when ρm̄ > κ) we would expect that

∂J

∂K
≥ 0

Specifically,

∂

∂K

(
ln

(∫ m

m0

t (s) dF (s)

)
− ln

(∫ ∞

m0

t (s) dF (s)

))
= −

∫∞
m0

1
c′′(t(s))dF (s)∫m

m0
t (s) dF (s)

(∫m

m0

1
c′′(t(s))dF (s)∫∞

m0

1
c′′(t(s))dF (s)

−
∫m

m0
t (s) dF (s)∫∞

m0
t (s) dF (s)

)
< 0
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Therefore, data consistent with the fixed cost story of d’Acunto and Rossi

(forthcoming) could generate a positive coefficient of γ when estimating regression

(5) if CCARb,t is a proxy for K.

Now, consider a regression along the lines of

lnBb,t = γCCARb,t +
J∑
j=1

βj lnF j
b,t + εi,t (6)

where b indexes banks, t indexes time, Bb,t is the number of loans at the

bunch, and F j
b,t is the number of loans in bin j below the CLL. Denote the bunching

fraction as

B = F (m̄)− lim
m↑m̄

F (m)

In terms of our model parameters,

Bb,t = t (m̄)B

F j
b,t ≈ t (mj) dF (mj)

for mortgage amounts mj < m̄.

Now, fixed costs no longer can account for a finding of a nonzero γ in the

above regression. This is because

lnBb,t =

(
ln (t (m̄)) + ln

(
lim
m↑m̄

dF (m)

))
+

(
ln (B)− ln

(
lim
m↑m̄

dF (m)

))

and
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J∑
j=1

βj lnF j
b,t =

J∑
j=1

βj (ln (t (mj)) + ln (dF (mj)))

The first addend of lnBb,t is in the span of
{
βj lnF j

b,t

}∞
j=1

because t (m)

is left-continuous at m̄, and therefore, it should be predicted by
∑J

j=1 βj lnF j
b,t ar-

bitrarily well. The second addend is just a function of the underlying distribution

F (m) and does not depend on K. Therefore, any endogenous effects on Bb,t through

changes to t (m̄) would be controlled for in our specification as t (m) is left-continuous

at m̄, and estimation of regression (6) from data coming from the solution to the

optimization problem (2) should generate an estimate of zero for the coefficient γ if

CCARi,t is a proxy for K.2

5 Results for Bunching at the CLL

Armed with the intuition from the model in Section 3, we consider the association

between bunching at the CLL and entry into CCAR. Figure 3 presents a pictorial

version of a “difference-in-difference” analysis of the evolution of bunching at the CLL

for banks that were ever in CCAR and banks that were never in CCAR before and

after financial regulation was passed. In the top two panels we see the distributions

of mortgage lending for CCAR and non-CCAR lenders in 2010, before regulation

2The model could be further complicated by making ρ a choice variable for the bank. We develop
this case in the Appendix. If ρ is endogenous, we can no longer make unambiguous statements about
∂F̃ /∂K. However, we can show that if the cost function c (t) is polynomial, then the condition
∂2t/∂m∂K ≥ 0 (advertising for loans increases in loan size more when per-loan costs increase) for
all loan sizes implies ∂ρ/∂K ≥ 0. This implies an increasing bunch and a lower jumbo share as
per-loan costs increase, which is counterfactual to our results and therefore does not help to explain
them.
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went into effect. The density of mortgages by volume is decreasing through the

conforming loan segment, with a sharp bunch at the CLL and a sharp drop into the

space of jumbo loans. In 2010, relatively few jumbo loans were being made by either

CCAR or non-CCAR banks. The bottom two panels show the same distributions

in 2014. The distribution for the non-CCAR lenders looks like the distribution of

either set of lenders in 2010, with a pronounced bunch and a sharp decline in loan

density for immediately larger values of mortgage size. However, the distribution of

the CCAR lenders now looks quite different, with a thick tail of loans stretching out

into the jumbo space, with the density being almost continuous with the density of

conforming loans. There still is a bunch at the CLL, but it is considerably smaller

relative to the density of conforming loans close to the CLL: the number of loans

in the CLL bin for CCAR lenders in 2014 is approximately twice the number of

loans in the adjacent bin of conforming loans (the ones that are $30,000 to $60,000

below the CLL), whereas the number of loans in the CLL bin for non-CCAR lenders

in 2014 and any kind of lender in 2010 is at least three times the number of loans

in the adjacent conforming bin of each distribution. Therefore, we see that CCAR

lenders decreased bunching at the CLL in 2014 relative to non-CCAR lenders that

year and to all lenders in 2010. Correspondingly, they increased their share of jumbo

originations.

Table 2 presents the same specifications that we ran for the jumbo share,

now with the dependent variable being the log number of loans in the bunching bin.

We also modify the set of control variables, following the results of our model in

Section 3. Moreover, previous literature exploiting bunching (Saez 2010, Kleven and
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Wasseem 2014) has implicitly controlled for the continuous part of the distribution

of the variable in question in their analysis. To that end, we control for the log loan

count and volume in every $30,000-wide bin of the loan size distribution except the

bunching bin (setting these variables to zero for banks and years with no loans in a

given bin) as well as for the overall log loan count and volume. In particular, we now

control for the size distribution of conforming loans, and these controls would capture

a reallocation of jumbo loans from smaller to larger ones if the shift of regulated banks

towards jumbo were explained by an incentive to make larger loans more generally

(d’Acunto and Rossi, forthcoming). Our main regression for the bunching analysis

is

ln
(
NBunch
b,t

)
= αb + αt + δCCARb,t + β1 ln

(
NTotal
b,t

)
+ β2 ln

(
V Total
b,t

)
(7)

+
∑

k 6=Bunch

ζk ln
(
Nk
b,t

)
+

∑
k 6=Bunch

ξk ln
(
V k
b,t

)
+ β3 ln (Ab,t)

+λt × ln (Ab,2010) + εi,t

where NBunch
b,t is the count of loans in the bunching bin for bank b in year

t, and Nk
b,t and V k

b,t are the loan counts and volumes in the other bins that are used

to construct the distributional controls. We expect the coefficient δ to be negative,

since if CCAR incentivizes banks to shift to jumbo, it should decrease bunching at

the CLL.

We present our results of the effects of CCAR on bunching at the CLL in

Table 2. Column 1 presents the baseline. We see that that, on average, once CCAR
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began, the number of loans in the bunching bin decreases by 0.188 log points, or

approximately 17% for banks that were ever part of CCAR relative to other banks,

which is statistically significant at 1%. Column 2 presents the baseline results with-

out almost all of the distributional controls. The only control that we retain is the

log count of loans in the adjacent bin to the bunch (the one containing loans that

are $30,000-$60,000 less than the CLL). The coefficient on the CCAR interaction

increases in magnitude to −0.281 and retains significance at 1%, although the confi-

dence interval includes the original estimate from column 1. Therefore, the inclusion

of most of the distributional controls is not essential for our result that regulated

banks experienced a decline in bunching at the CLL when the regulations took effect.

It is useful to see that the timing of the decline in bunching at the CLL

among the CCAR banks aligns with the implementation of CCAR. To this end, in

Figure 4, we present a year-by-year version of this regression in which the coefficient

δ is allowed to vary by t, and plot the path of δt over time. We normalize the value of

δ2010 to zero without loss of generality. We find that before 2010, including through

the years of the housing boom and bust between 2003 and 2009, the γt coefficients

are not significantly different from zero, pointing to there not being a differential

trend in the extent of bunching at the CLL for banks that would eventually become

part of CCAR relative to banks that didn’t. This finding is notwithstanding the

strong variation in bunching at the CLL over the 2000s, with bunching in aggregate

being muted during the boom but very prominent both in the pre-boom period

and during the bust (when the market for jumbo loans dried up nearly completely).

However, after 2010, as CCAR became a feature of the regulatory landscape, the δt
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coefficients become sharply negative, declining to about −0.25 log points by 2015.

The δt coefficients rise somewhat in 2016, but still remain significantly negative.

It is also important to verify that our dependent variable – the log of the

count of loans in the bunching bin – is not proxying for other shifts in the size

distribution of mortgages that have not been accounted for by the distributional

controls. In Figure 5 we present estimates of equation (7) in which we replace the

dependent variable with the log count of other bins to the left of the CLL and control

for the log count of the bunching bin on the right hand-side. We see that the only

other bin for which the CCAR coefficient δ is statistically significant is the bin that is

adjacent to the bunching bin (containing loans that are between $30,000 and $60,000

lower than the CLL). The magnitude of δ when the log loan count in that bin is the

dependent variable is roughly half of the magnitude of δ when the dependent variable

is the bunching bin. The values of δ when the dependent variable is formed by any

other bin are all small and statistically insignificant. Hence, the data shows that the

bunching bin is special relative to the other parts of the size distribution of mortgages

to the left of the CLL, giving us greater confidence in the analysis.

The remaining columns of Table 2 reproduce the same robustness checks as

columns 2 through 7 of Table 1. We see that when the log number of loans in the

bunching bin is the dependent variable, the coefficient estimate varies considerably

less than it does when the dependent variable is the jumbo share. For example, when

we add bank linear trends in column 5, the coefficient on the “ever CCAR” variable

becomes −0.209, very close to the coefficient in the baseline specification. In columns

6 and 7, in which we perform our analysis on the 60 largest banks and on the 30 banks
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nearest to the CCAR cutoff of $50 billion, thus substantially reducing the sample and

the control group, we obtain coefficients of −0.145 and −0.184 respectively, both of

which are close in magnitude to the baseline coefficient in column 1. We verify that

being a CCAR bank, rather than being a large bank, is what is driving our results by

presenting versions of Figure 3 for the 60 largest banks and the 30 banks nearest to

the CCAR cutoff in the top three panels of Figure 6. We see that the number of loans

in the bunching bin relative to the overall number of conforming loans is smaller for

the CCAR banks than for similarly sized non-CCAR banks in 2014, while, in 2010,

the reverse was the case. In the bottom three panels of Figure 6 we present trends

in this ”relative bunch” measure (the ratio of the number of loans in the bunching

bin to the total number of conforming loans) for CCAR and non-CCAR banks for

the duration of our analysis for the all bank sample, the 60 bank sample and the 30

bank sample. It is clear that the relative bunch for the non-CCAR banks in either

sample is increasing through the sample period, while the relative bunch for CCAR

banks falls after a turning point around 2010. Finally, in column 9, we perform the

placebo check of removing the “ever CCAR” banks from the regression and labeling

the largest 30 banks by 2010 assets as the “ever CCAR” banks. Reassuringly, we

find no effect on the bunching behavior of these large non-CCAR banks relative to

their smaller non-CCAR counterparts.

The fact that entry into CCAR (rather than merely being large) is associ-

ated with a decline in bunching at the CLL provides evidence against the idea that

regulation affected bank behavior by creating fixed costs of regulations that were

most economically managed by taking out large loans. Mortgages just above the
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CLL are not appreciably larger than mortgages just below the CLL, but they are

very different from an institutional perspective because they can be securitized. The

finding that upon the beginning of the stress testing regime in earnest, large banks

began disproportionately favoring the first type of loans suggests that something

about regulations at that time spurred them to that alternative institutional regime.

6 Potential Mechanisms

While we find that entry into CCAR statistically explains a considerable part of the

“jumbo shift” it is by no means evident that entry into CCAR causally explains it. .

The CCAR banks also faced stricter regulation in addition to stress tests, including

a new liquidity rule and higher capital requirements. Regulation of other banks in

our control group also changed, including an alternative Dodd Frank Test (DFAST).

In the next section, we invesigate if these non-CCAR regulations explain the CCAR

jumbo shift.

6.1 Other Concurrent Regulations on Large Banks

Table 3 presents estimates of equation (1) and Table 4 presents estimates of equa-

tion (7) augmented by various controls to get at different channels through which

regulation could have incentivized banks to expand jumbo lending as a share of their

mortgage portfolio and to decrease bunching at the CLL. (We present a version of Ta-

ble 3 augmented by log average mortgage loan size in Appendix Table A3.) Column

1 in each table replicates the baseline. First, we investigate whether our findings are
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driven by different groups of banks exposed to different regulations by asset volume.

CCAR banks were not the only banks to undergo stress tests – banks with assets

as low as $10 billion had to undergo annual Dodd-Frank Act Stress Tests (DFAST).

While both test banks’ capital plans, DFAST uses a standard plan for covered banks

while CCAR uses the banks’ own plans). If taking any kind of stress test incentivized

banks to increase their relative preference for jumbo over conforming loans, we should

see similar increases in the jumbo share and similar decreases in the bunch for the

DFAST banks as well as for the CCAR banks. Similarly, the largest banks, those

with assets of $250 billion and more, were subject to even more stringent regulations

and designated as Globally Systemically Important Banks (GSIBs). In theory, the

CCAR effects that we computed in Section 3 could be driven by this small group of

8 enormous banks.

Column 2 of Table 3 presents estimates of equation (1), including an addi-

tional interaction between the year being 2011 or later and the bank having assets

greater than $10 billion in 2010, and another interaction between the time period

dummy and the bank having assets of greater than $250 billion in 2010. Various post-

GFC bank regulations are activated at those thresholds.We see that, conditional on

the CCAR interaction, the coefficient on the $10 billion interaction is statistically

insignificant and tiny (−0.008), while the estimate on the CCAR interaction remains

large, significant and close to the baseline estimate (0.058). The coefficient on the

$250 billion interaction is also large (0.046), suggesting that GSIBs might have ex-

perienced a greater jumbo shift than other CCAR banks, but is not statistically

significant. The corresponding estimates in Column 2 of Table 4 have the same im-
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plications: the estimate of the CCAR interaction is a statistically significant −0.144,

and the estimates of the $10 billion and $250 billion interactions are insignificant

and small. Therefore, the shift to jumbo by CCAR banks appears unique to CCAR

stress tests specifically and is not a general large bank effect.

6.2 Capital and Balance Sheet Capacity

An important channel through which regulation may have affected the propensity of

regulated banks to originate jumbo mortgages by requiring them to hold more capital.

Buchak, Matvos, Piskorski and Seru (2019) argue that increased capital requirements

gives banks a comparative advantage (over non-banks) in holding mortgages rather

than selling them. They find that banks with higher capital ratios originate more

jumbo mortgages than banks with lower capital ratios.

To investigate whether higher capital requirements account for our baseline

findings above, we add banks’ risk-weighted capital ratio and their leverage ratio to

the model. The former equals (Tier I) capital divided by total risk-weighed assets.

The latter equals (Tier I) capital divided by total (unweighted) assets. Both are

bounded from below by regulators and either, if binding, can affect banks’ lending

decisions. Only 697 of the 911 banks in our original sample are required to report

the Tier I ratios (which involves performing a risk-weighting of the bank’s assets). In

column 3 of Tables 3 and 4 we reproduce our baseline results on this smaller sample of

697 banks. We see that the coefficient on the CCAR interaction declines in magnitude

from 0.065 to 0.033 (losing significance) in the jumbo share specification and from

−0.188 to −0.121 (significant at 10%) in the bunching specification. Therefore, while
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this sample is less favorable to our initial findings, we still can reproduce our results

in the smaller sample of banks with Tier I ratios. In column 4 of Tables 3 and 4 we

conduct the test that we propose. We find that the coefficients on the Tier I ratios are

statistically insignificant, with the coefficient on the Tier 1 Capital Ratio carrying the

right sign, and the coefficient on the Tier 1 Leverage Ratio carrying the wrong sign

(negative in the jumbo share specification and positive in the bunching specification).

In both tables, the coefficient on the CCAR interaction is essentially unchanged from

the baseline for the sample of 697 banks. Therefore, greater capitalization does not

explain the CCAR effect.3

6.3 Direct Effects of Stress Test Scores

Another channel that could explain the shift of regulated banks to jumbo could be

the outcome of the stress tests themselves. Cortes et al. (2019) use scores from

the CCAR stress tests to show that banks that came closer to failing to meet the

quantitative targets of the tests made fewer small business loans and more mortgage

loans, as the latter were treated as safer by the stress tests. It could be the case that

jumbo loans were also treated as safer than conventional loans. Column 5 of Tables

3 and 4 reestimates the baseline equations (1) and (7) on the original sample of over

900 banks, controlling for additional interactions of the currently CCAR indicator

with stress test scores, normalized as the distance between each stress test score

and its passing threshold, with passing scores set to be negative and failing scores

3We find that CCAR banks do experience an increase in their Tier I Capital Ratios, but this
correlation goes away when one controls for the log asset by year fixed effects. Results are available
on request
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set to be positive. We consider stress tests for Tier 1 Capital, Tier 1 Leverage and

Tier 1 Risk-Based Capital, as well as a variable equal to the stress test score closest

to failing (the Min Exposure measure). We find essentially no role for stress test

outcomes in driving the jumbo shift. The CCAR interaction remains statistically

significant at 5% and close to the baseline estimate in both Table 3 (0.05) and in

Table 4 (−0.159). The interactions of the stress test scores with the CCAR indicator

are almost always statistically insignificant, except for the one with Tier 1 Leverage

Distance in the jumbo share specification, which is consistent with banks that are

closer to failure increasing their jumbo share.

6.4 Liquidity Coverage Rule

A final channel that we consider is the Liquidity Coverage Rule regulation (LCR).

Banks subject to LCR were required to have a sufficient quantity of suitably defined

liquid assets (for example, deposits that were expected to be stable) relative to

liabilities. The value of this ratio for a bank in a stressed scenario is known as the

Liquidity Stress Ratio (LSR). Importantly, bank accounts of individuals who had

mortgages with the bank were considered to be “stable deposits” from the point

of view of LCR, whereas bank accounts of individuals with no other ties to the

bank were generally not. This feature of the LCR made it appealing for banks to

issue mortgages to wealthy individuals, who might then hold large accounts with

these banks that would be counted as stable deposits. As many of the banks that

were subject to the LCR also were subject to CCAR, we investigate heterogeneity

within this set of banks by interacting the LCR dummy with a measure of the
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liquidity stress ratio (LSR) in 2010 for the banks subject to the rule. Column 6 of

Tables 3 and 4 presents the resulting estimates. We see that the coefficient on the

CCAR interaction in the jumbo share specification remains statistically significant

and somewhat larger than the baseline coefficient (0.096), however the coefficient

on the CCAR interaction in the bunching specification shrinks to −0.097 (roughly

half of the baseline) and becomes statistically insignificant. However, its confidence

interval is large and includes the baseline coefficient. The coefficients on the LCR

and LCR-LSR interactions are statistically insignificant in the bunching specification,

suggesting that it is not clear whether CCAR or LCR may be driving the decline in

bunching at the CLL for the banks that fall under CCAR.

6.5 Impacts on Nonperforming Loans

A natural follow-up question to the finding that regulation has driven CCAR banks

to increase jumbo lending is whether this jumbo shift has made the CCAR banks

safer along some dimension. In Table 5 we reestimate equations (1) and (7), replacing

the dependent variable with the fraction of residential real estate loans on the bank’s

books that are nonperforming. We find no statistically or economically significant

effects of CCAR on nonperforming loans.

7 Conclusion

We show that that recovery in jumbo mortgage lending since the 2010 is bifurcated,

with stress tested banks shifting to jumbo far more than others. We use lender-loan
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level data from the Home Mortgage Disclosure Act as well as regulatory variables

for the largest bank holding companies present in the mortgage market to show that

the jumbo shift of the 2010s took place for the banks subject to CCAR stress tests,

and through our analysis of changes in bunching behavior at the CLL, that financial

regulation changed incentives for these banks to issue nonconforming vs. conforming

loans conditional on the size of the loan. We provide evidence against a number of

plausible mechanisms for this phenomenon. While we do not find clear evidence in

support of any specific mechanism, one mechanism that appears to explain the data

better than others may be the Liquidity Coverage Rule regulation. We also find that

participation in CCAR made banks’ mortgage loan portfolios have an insignificantly

lower fraction of nonperforming loans, although this is not the only dimension of

bank portfolio safety that is relevant.

Our paper shows that financial regulation is capable of reshaping bank

incentives in the mortgage market, and, in theory, allocating credit. While we do

not explore the normative effects of the jumbo shift in this paper, policymakers

should be careful in designing future regulations to avoid generating consequences

that may not fit with their original objectives.
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Figure 4

Figure 5
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Figure 6

Full Sample Top 60 Banks Closest 30 Banks
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9 Tables

Table 1

Baseline Jumbo Share Specification
Dependent variable is the share of mortgages originated by a bank that are jumbo.

(1) (2) (3) (4) (5) (6) (7)

Ever
CCAR

Currently
CCAR

Bank Exp
Controls

Lender Linear
Trends

60 Largest
Banks

30 Nearest
Margin

CCAR
Placebo

(Ever CCAR)*
(Year>2010) 0.065*** 0.063*** 0.085*** 0.035 0.029 0.103 -0.010

(0.019) (0.018) (0.019) (0.022) (0.039) (0.075) (0.018)
N 11982 11982 11905 11982 926 464 11556
# Lenders 909 909 907 909 60 30 879

Each regression includes bank and year fixed effects and controls for yearly log assets and log assets in 2010 multiplied by year fixed effects.

Observations at the Lender/Year level. Double-Clustered Standard Errors (Lender and Year) in Parentheses.

Coefficients on (Ever CCAR)*(Year>2010) represent γ in Equation 1.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 2

Baseline Bunching Specification
Dependent variable is the log number of loans between $0 and $30,000 less than the Conforming Loan Limit.

(1) (2) (3) (4) (5) (6) (7) (8)

Ever
CCAR

Ever
CCAR

Currently
CCAR

Bank Exp
Controls

Lender Linear
Trends

60 Largest
Banks

30 Nearest
Margin

CCAR
Placebo

(Ever CCAR)*
(Year>2010) -0.188*** -0.281*** -0.167*** -0.182*** -0.209** -0.145 -0.184 -0.050

(0.050) (0.089) (0.056) (0.049) (0.080) (0.100) (0.175) (0.053)
Dist. Ctrls. Yes No Yes Yes Yes Yes Yes Yes
N 11982 11982 11982 11905 11982 926 464 11556
# Lenders 909 909 909 907 909 60 30 879

Each regression includes bank and year fixed effects and controls for yearly log assets, log assets in 2010 multiplied by year fixed effects,

and log loan counts and volume in all other bins.

Observations at the Lender/Year level. Double-Clustered Standard Errors (Lender and Year) in Parentheses.

Coefficients on (Ever CCAR)*(Year>2010) represent δ in Equation 7.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 3

Mechanisms for Baseline Jumbo Share Specificiation
Dependent variable is the share of mortgages originated by a bank that are jumbo.

(1) (2) (3) (4) (5) (6)

Baseline
Specification

Other
Regulations

Baseline
697 Bank
Sample

Balance
Sheet

Capacity

Stress
Test

Measures

Liquidity
Coverage

Ratio
(Ever CCAR)*
(Year>2010) 0.065*** 0.058** 0.033 0.033 0.050** 0.096***

(0.019) (0.023) (0.025) (0.025) (0.018) (0.019)

Currently CCAR 0.027
(0.019)

(Assets>10B)*
(Year>2010) -0.008

(0.017)
(Assets>250B)*

(Year>2010) 0.046
(0.028)

Tier 1 Leverage
Ratio (1 yr lag) -0.215

(0.181)
Tier 1 Capital

Ratio (1 yr lag) 0.070
(0.105)

Currently CCAR
Min. Exposure -0.017

(0.019)
Currently CCAR*

Tier 1 Capital Distance -0.006
(0.014)

Currently CCAR*
Tier 1 Leverage Distance 0.030**

(0.011)
Currently CCAR*

Tier 1 Risk-
Based Capital Distance -0.007

(0.013)
LCR Treatment -0.175***

(0.059)
LCR Treatment

LSR 2010 0.244
(0.143)

N 11982 11982 8888 8888 11982 9643
# Lenders 909 909 697 697 909 700

Each regression includes bank and year fixed effects and controls for yearly log assets and log assets in 2010 multiplied

by year fixed effects.

Observations at the Lender/Year level. Double-Clustered Standard Errors (Lender and Year) in Parentheses.

Coefficients on (Ever CCAR)*(Year>2010) represent γ in Equation 1.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4

Mechanisms for Baseline Bunching Specification
Dependent variable is the log number of loans between $0 and $30,000 less than the Conforming Loan Limit.

(1) (2) (3) (4) (5) (6)

Baseline
Specification

Other
Regulations

Baseline
697 Bank
Sample

Balance
Sheet

Capacity

Stress
Test

Measures

Liquidity
Coverage

Ratio
(Ever CCAR)*
(Year>2010) -0.188*** -0.144** -0.121* -0.121* -0.159** -0.097

(0.050) (0.059) (0.068) (0.068) (0.066) (0.083)
Currently CCAR -0.082

(0.085)
(Assets>10B)
(Year>2010) -0.058

(0.052)
(Assets>250B)
(Year>2010) -0.012

(0.092)
Tier 1 Leverage
Ratio (1 yr lag) 1.031

(0.797)
Tier 1 Capital

Ratio (1 yr lag) -0.458
(0.534)

Currently CCAR*
Min. Exposure 0.008

(0.069)
Currently CCAR*

Tier 1 Capital Distance -0.014
(0.036)

Currently CCAR
Tier 1 Leverage Distance -0.035

(0.053)
Currently CCAR

Tier 1 Risk-
Based Capital Distance 0.024

(0.020)
LCR Treatment 0.158

(0.217)
LCR Treatment

xLSR 2010 -0.489
(0.385)

N 11982 11982 8888 8888 11982 11982
# Lenders 909 909 697 697 909 909

Each regression includes bank and year fixed effects and controls for yearly log assets, log assets in 2010 multiplied by year

fixed effects, and log loan counts and volume in all other bins.

Observations at the Lender/Year level. Double-Clustered Standard Errors (Lender and Year) in Parentheses.

Coefficients on (Ever CCAR)*(Year>2010) represent δ in Equation 7.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5

Baseline Jumbo Share and Bunching Specifications
on Nonperforming Loans

Dependent variable is the fraction of mortgage loans that are nonperforming.

(1) (2)
Bunching Specification Jumbo Specification

(Ever CCAR)*(Year>2010) -0.007 -0.007
(0.008) (0.008)

Distributional Controls Yes No
Log(2010 assets) X Year FE Yes Yes
N 9627 9627
Number of Lenders 700 700

Right hand-sides of columns (1) and (2) correspond to baseline specifications in Tables 1 and 2 respectively.
Coefficients on (Ever CCAR)*(Year>2010) represent γ of Eq. 1 in Column (1)

and δ of Eq. 7 in Column (2).

* p < 0.10, ** p < 0.05, *** p < 0.01
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10.1 Appendix Figures

Figure A1

10.2 Appendix Tables
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Table A1

CCAR Banks by Entry Year

Bank Name Year Entered CCAR
Ally 2011

Bankwest 2015
BB&T 2011
BBVA 2013

BMO Harris 2013
BNY Mellon 2011

Bank of America 2011
Capital One 2011

Citi 2011
Citizens 2013

Comerica 2013
Deutsche Bank 2014

Discover 2013
Fifth Third 2011
Goldman 2011

HSBC 2013
Huntington 2013

JP Morgan Chase 2011
KeyCorp 2011

Morgan Stanley 2011
M&T 2013

MUFG 2013
Northern Trust 2013

PNC 2011
Regions 2011

Santander 2013
SunTrust 2011

TD 2015
US Bancorp 2011
Wells Fargo 2011

Zions 2013
Last observed in 2016. All banks entering CCAR
remain until last observation.
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Table A2

Baseline Jumbo Share Regression, Controlling for Average Loan Size
Dependent variable is the share of mortgages originated by a bank that are jumbo.

(1) (2) (3) (4) (5) (6) (7)

Ever
CCAR

Currently
CCAR

Bank Exp
Controls

Lender Linear
Trends

60 Largest
Banks

30 Nearest
Margin

CCAR
Placebo

(Ever CCAR)*(Year>2010) 0.041*** 0.042*** 0.060*** 0.026* 0.024 0.040 -0.007
(0.012) (0.011) (0.011) (0.013) (0.020) (0.034) (0.012)

Log(Avg Loan Size) 0.198*** 0.198*** 0.190*** 0.201*** 0.262*** 0.303*** 0.196***
(0.014) (0.014) (0.013) (0.014) (0.035) (0.049) (0.014)

Log(2010 assets) X Year FE Yes Yes Yes Yes Yes Yes Yes
N 11982 11982 11905 11982 926 464 11556
Number of Lenders 909 909 907 909 60 30 879

Each regression includes bank and year fixed effects and controls for yearly log assets and log assets in 2010 multiplied by year fixed effects.

Observations at the Lender/Year level. Double-Clustered Standard Errors (Lender and Year) in Parentheses.

Coefficients on (Ever CCAR)*(Year>2010) represent γ in Equation 1.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A3

Mechanisms for Baseline Jumbo Share Specificiation, Controlling for Average Loan Size
Dependent variable is the share of mortgages originated by a bank that are jumbo.

(1) (2) (3) (4) (5) (6)

Baseline
Specification

Other
Regulations

Baseline
Bank

Sample

Balance
Sheet

Capacity

Stress
Test

Measures

Liquidity
Coverage

Ratio
(Ever CCAR)*
(Year>2010) 0.041*** 0.042** 0.026** 0.026* 0.029** 0.060***

(0.012) (0.014) (0.014) (0.014) (0.011) (0.012)
Currently CCAR 0.029*

(0.014)
(Assets>10B)*
(Year>2010) -0.004

(0.011)
(Assets>250B)*

(Year>2010) 0.007
(0.017)

Tier 1 Leverage
Ratio (1 yr lag) -0.247*

(0.124)
Tier 1 Capital

Ratio (1 yr lag) 0.063
(0.076)

Currently CCAR*
Min. Exposure -0.009

(0.010)
Currently CCAR*

Tier 1 Capital Distance -0.018**
(0.007)

Currently CCAR*
Tier 1 Leverage Distance 0.024***

(0.008)
Currently CCAR*

Tier 1 Risk-
Based Capital Distance 0.004

(0.007)
LCR Treatment -0.064*

(0.031)
LCR Treatment*

LSR 2010 0.068
(0.073)

N 11982 11982 8888 8888 11982 9643
Number of Lenders 909 909 697 697 909 700

Each regression includes bank and year fixed effects and controls for yearly log assets and log assets in 2010 multiplied

by year fixed effects.

Observations at the Lender/Year level. Double-Clustered Standard Errors (Lender and Year) in Parentheses.

Coefficients on (Ever CCAR)*(Year>2010) represent γ in Equation 1.

* p < 0.10, ** p < 0.05, *** p < 0.01
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10.3 Appendix Theory

10.3.1 Borrower optimization problem

We assume that borrowers with unobservable characteristics θ have a utility function

U (m, r, θ) over mortgage amounts m and interest rates r. We assume this function

to satisfy the following properties:

Umm < 0, Ur < 0, Umr < 0

Then, mortgage demand m (r) satisfies

Um (m (r, θ) , r, θ) = 0

and, in particular, is decreasing in r

mr (r, θ) = −Umr/Umm < 0

The consumer’s value function is defined by

V (r, θ) = U (m (r, θ) , r, θ)

and by the envelope theorem,

Vr = Ur < 0

Now consider the setup in which there is a mortgage level m̄ that is the
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CLL: for mortgages under the CLL the interest rate is r, while the interest rate for

mortgages over the CLL is r+ρ. It is clear that some borrowers will prefer to bunch

at the CLL instead of applying for a nonconforming (jumbo) loan. We can divide

borrowers into three groups: conforming, bunchers and jumbo, defined by the three

sets below

C (r) = {θ : m (r, θ) ≤ m̄}

B (r, ρ) = {θ : m (r, θ) > m̄ & U (m̄, r, θ) ≥ V (r + ρ, θ)}

J (r, ρ) = {θ : m (r, θ) > m̄ & U (m̄, r, θ) < V (r + ρ, θ)}

It is clear that the set of conforming borrowers C (r) does not depend on ρ,

the jumbo-conforming spread.

Now, P (B (r, ρ)) is increasing in ρ, because

ρ1 > ρ0 ⇒ V (r + ρ1, θ) < V (r + ρ0, θ)

⇒ P (U (m̄, r, θ) ≥ V (r + ρ0, θ))

≤ P (U (m̄, r, θ) ≥ V (r + ρ1, θ))

Similarly, it is clear that P (J (r, ρ)) is decreasing in ρ, because P (B (r, ρ))+

P (J (r, ρ)) = 1− P (C (r)), which does not depend on ρ.

We can define m (r, ρ, θ) = m (r, θ)× 1 (θ ∈ C (r)) + m̄× 1 (θ ∈ B (r, ρ)) +

m (r + ρ, θ)× 1 (θ ∈ J (r, ρ))
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We can abstract from θ by writing down the CDF for m

F (m, r, ρ) = P (m (r, ρ, θ) ≤ m)

Then, for m < m̄,

F (m, r, ρ) = C (m, r)

for m = m̄

F (m̄+, r, ρ)− F (m̄−, r, ρ) = P (B (r, ρ))

and for m > m̄,

F (m, r, ρ|θ ∈ J (r, ρ)) = G (m, r, ρ)

In particular,

∂G

∂ρ
(m, r, ρ) =

∂

∂ρ
P (m (r + ρ, θ) ≤ m & U (m̄, r, θ) < V (r + ρ, θ)) < 0 for all m

Abusing notation, we can then talk of C (m, r) and G (m, r, ρ) as the CDFs

of conforming and jumbo loans. An example of a model of this style is presented in

DeFusco and Paciorek (2019).
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10.3.2 Bank’s optimization problem

Let’s suppose that a bank that must lend conforming loans at rate r (set in compet-

itive equilibrium) but that may change the jumbo-conforming spread ρ to maximize

profit faces borrowers as described in Section 1 of the Appendix. We assume that

there is a minimum loan size m0 such that all loans above m0 are profitable and no

type ever wants to borrow less than m0 (in particular, m0 > 0 and C (m0, r) = 0 for

any reasonable r). We also assume the bank incurs a per-loan regulatory cost K and

an additional per-loan regulatory cost κ for jumbo loans. An increase in K can be

interpreted as a general increase in regulatory burden, while an increase in κ can be

interpreted as a jumbo-specific regulatory increase.

The bank’s profit function can then be written as

Π (r, ρ) =

∫ ∞
m0

[(rm−K) + 1 (m > m̄) (ρm− κ)] dF (m, r, ρ)

and the first-order condition for maximization is given by

Πρ =

∫ ∞
m̄

mdF (m, r, ρ) + (rm̄−K)
∂P (B (r, ρ))

∂ρ

+

∫ ∞
m̄

[(rm−K) + (ρm− κ)] dGρ (m, r, ρ) = 0

which is equivalent to
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0 =

∫ ∞
m̄

mdF (m, r, ρ) + rm̄
∂P (B (r, ρ))

∂ρ
+

∫ ∞
m̄

[rm+ (ρm− κ)] dGρ (m, r, ρ)

since

∂B

∂ρ
+
∂J

∂ρ
=
∂C

∂ρ
= 0

Therefore, ΠρK = 0, so

∂ρ

∂K
= −ΠρK

Πρρ

= 0

and a change in the fixed cost K therefore does not affect the jumbo-

conforming spread ρ. As ρ is the only endogenous variable in the model, it follows

that an increase in K does not affect the fraction of bunchers B or the jumbo share

J.

On the other hand, an change in jumbo-specific per-loan costs κ does have

such effects. In particular,

Πρκ = −
∫ ∞
m̄

dGρ (m, r, ρ) = −∂P (J (r, ρ))

∂ρ
> 0

Therefore,

∂ρ

∂κ
= −Πρκ

Πρρ

> 0
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and

∂P (B (r, ρ))

∂κ
=
∂B

∂ρ

∂ρ

∂κ
> 0

Thus, observing that the bunching fractionB declines, the jumbo-conforming

spread falls and the jumbo share rises would be naturally predicted by a decrease in

jumbo-specific loan costs κ.

10.3.3 A richer model of the fixed cost story

One problem with the model in section 3 is that it does not present is no ”fixed

cost story”: changes to K are irrelevant to the bank’s only choice variable ρ, and

therefore, to the distribution of realized mortgages. The reason for this is that in

this model, every consumer originates a loan (possibly of a size that depends on

the bank) so the bank will always pay K in fixed costs regardless of what it does.

A richer model can endogenize the bank’s seeking out of larger or smaller loans by

allowing the bank to advertise to individuals demanding a mortgage of size m at

a cost. Specifically we assume that for every mortgage level m, the bank can pay

1
k
t (m)k per mortgage to multiply the number of loans attracted by t (m). The bank’s

problem becomes

Π (t, r, ρ) =

∫ ∞
m0

{
[(rm−K) + 1 (m > m̄) ∗ (ρm− κ)] t (m)− 1

k
t (m)k

}
dF (m, r, ρ) (8)

We assume classic convex costs, such that k > 1. Our original model from

Section 3 is a special case of this model in which k → ∞, so that costs are zero up

52



to t (m) = 1 and infinitely high thereafter. Other interpretations of t (m) may be

hiring additional staff to work with different ends of the mortgage market, in which

case costs might be linear but returns might be concave. Anecdotal evidence from

bank supervision officers indicates that some major banks did expand their wealth

management divisions.

The first-order condition in t (m) is

∂Π

∂t (m)
= (rm−K) + 1 (m > m̄) ∗ (ρm− κ)− t (m)k−1 = 0

A ”fixed cost story” would imply that an increase in fixed costs K should

increase advertising by more for high values of m than for low values of m. In other

words, we must have

∂2t (m)

∂m∂K
≥ 0 (9)

We now show that for any k > 1, if ∂ρ
∂K

< 0, then inequality (9) must be

violated for large enough values of m.

Differentiating the FOC in t (m) over K and accounting for the fact that

ρ = ρ (K) depends on K but is common for all m, we obtain
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t (m)k−1 = (rm−K) + 1 (m > m̄) ∗ (ρm− κ)

(k − 1) t (m)k−2 ∂t (m)

∂K
= 1 (m > m̄)

∂ρ

∂K
m− 1

(k − 1) t (m)k−2 ∂t

∂m
= r + 1 (m > m̄) ∗ ρ

(k − 1) t (m)k−2 ∂
2t (m)

∂m∂K
= 1 (m > m̄)

∂ρ

∂K
v − (k − 1) (k − 2) t (m)k−3 ∂t

∂m

∂t (m)

∂K

In particular, the marginal cost t (m)k−1 is linearly increasing in m (except

possibly for a notch to the right of the CLL). The schedule t (m) is also increasing

in m.

We can simplify the expression for the cross partial ∂2t(m)
∂m∂K

for m ≤ m̄,

(k − 1) t (m)2k−3 ∂
2t (m)

∂m∂K
=

(k − 2)

(k − 1)
r

And for m > m̄

(k − 1) t (m)k−2 ∂
2t (m)

∂m∂K
=

1

k − 1

∂ρ

∂K
+

(k − 2)

(k − 1)

1

t (m)k−1

(
1− (K + κ)

∂ρ

∂K

)
[r + ρ]

substituting in the first-order condition.

The first term is constant in m and positive iff ∂ρ/∂K > 0. The second

term goes to zero as m goes to infinity. Therefore, for m large enough, the sign of

∂2t(m)
∂m∂K

is given by the sign of the first term. Hence, any model explaining the behavior

of ρ and t (m) by optimization of equation (8) that features a fixed cost story, with
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∂2t (m) /∂m∂K ≥ 0 for all m, must involve ∂ρ/∂K ≥ 0, and an increase in fixed

costs must increase the jumbo-to-conforming spread as well as the density at the

bunch, and decrease the jumbo share. In contrast, to rationalize our findings of a

declining bunch and rising jumbo share, we would need ∂ρ/∂K > 0. Therefore, even

if the fixed cost story has implications for the behavior of ρ, they should go counter

to what we observe in the data.
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