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A The model

The model is composed of a representative household that supplies labor and con-

sumes a final good; monopolistically competitive firms that produce intermediate

goods and set prices in a staggered way; a perfectly competitive final good producer,

and a central bank that sets monetary policy. Here we describe the problems of

household and firms and derive the equilibrium conditions presented in the main

text.

A.1 The demand side

The representative household chooses consumption and hours of work to maximize

expected discounted utility
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subject to a flow budget constraint
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In the preferences,  measures a degree of internal habit persistence,  is a subjective

discount factor and  and  are white noise preference shocks.  is consumption of

the final good, and  denotes its price.  is an aggregate of the hours supplied by

the household to intermediate good-producing firms. Hours are paid an economy-wide

nominal wage .

In the budget constraint,
R 1
0
Ψ() is profits of intermediate good producers

rebated to the household, +1 is the state-contingent value of the portfolio of assets

held by the household at the beginning of period  + 1 and +1 is a stochastic

discount factor.

The first order condition for the choice of consumption is

Ξ = 

∙
Ξ+1



Π+1

¸
 (3)

where Ξ is the marginal utility of consumption at ,

Ξ =


 − −1
− 

+1

+1 − 

 (4)

 = [(+1)]
−1 is the gross nominal interest rate, and Π is the gross inflation

rate: Π = −1. The first order-conditions for labor supply is

 = 

 Ξ

−1
  (5)

were  ≡  denotes the real wage. Because there is no capital or government,

the aggregate resource constraint is simply  = 

Growth in this economy is driven by an aggregate technological progress Γ (in-

troduced below). We therefore define normalized variables 
 ≡ Γ 


 ≡ Γ,

 = lnΓΓ−1 and Ξ
 ≡ ΞΓ and, imposing the aggregate resource constraint


 =  

  we express (4) and the equilibrium condition (3) respectively as

Ξ
 =



 
 −  

−1
1


− 

+1

 
+1+1 −  



(6)

and

Ξ
 = 

∙
Ξ
+1

¡
+1

¢−1 

Π+1

¸
 (7)

Similarly, we re-write the first order condition for labor supply as


 = 


 (Ξ


 )
−1

 (8)

where 
 ≡ Γ is the productivity adjusted real wage.
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A.2 The supply side

The final good producer combines  () units of each intermediate good  to produce

 units of the final good with technology

 =

∙Z 1

0

 ()
−1
 

¸ 
−1

 (9)

where  is the elasticity of substitution across intermediate goods. She chooses inter-

mediate inputs to maximize her profits, taking the price of the final good  as given;

this determines demand schedules

 () = 

µ
 ()



¶−
 (10)

The zero-profit condition then determines the aggregate price level

 ≡
∙Z 1

0

 ()
1−



¸ 1
1−

 (11)

Intermediate firm  hires  () units of labor on an economy-wide competitive market

to produce  () units of intermediate good  with technology

 () = Γ ()  (12)

where Γ is an aggregate technological process, whose rate of growth  ≡ lnΓΓ−1
evolves as

 = (1− ) + −1 + 

We assume staggered Calvo price-setting: intermediate good producers can reset

prices at random intervals, and we denote by 1 −  the reset probability. The first

order condition for the choice of optimal price ∗ is



∞X
=0

++

+

µ
∗ −



 − 1+

¶
= 0

where  denotes nominal marginal costs and the index  is suppressed, since

all optimizing firms solve the same problem. This condition and the evolution of

aggregate prices

 =
£
(1− )∗1− + −1

1−¤ 1
1− (13)

jointly determine the dynamics of inflation in the model.
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A.2.1 Marginal costs, output and price dispersion

The first order conditions for optimal price setting imply that the optimal price is

function of expected future marginal costs+ These can in turn can be expressed

as function of aggregate output. Specifically, in equilibrium real marginal cost (≡
) is equal to real wage corrected for productivity

 = 
  (14)

where the latter is defined by the equilibrium condition (8). Aggregate hours  are

obtained by aggregating hours worked in each intermediate firm:

 ≡
Z 1

0

 ()  =

Z 1

0

 ()

Γ
 =  



Z 1

0

µ
 ()



¶−
 =  

 ∆ (15)

where we denoted by∆ the following measure of price dispersion: ∆ ≡
R 1
0

³
()



´−


One can see that aggregate output is equal to the ratio of aggregate hours and the

measure of price dispersion:

 
 =



∆

 (16)

so that in equilibrium higher price dispersion implies that more hours are needed

to produce the same amount of output (indeed, labor productivity is the inverse of

the price dispersion index.) Substituting expressions (8) and (15) in (14) we obtain

a relationship between marginal costs and output, where price dispersion creates a

wedge between the two:

 = 

 (Ξ


 )
−1
=  (


 ∆)


(Ξ

 )
−1

 (17)

We will use this expression to derive a a Phillips curve in terms of output.

A.3 Steady-state relations

From the definition of ∆ we can derive that
1

∆ = (1− ) (e)− + Π
∆−1

where e denotes the relative price of the firms that optimizes at : e ≡ ∗ () ,

whose value can be obtained from the evolution of aggregate prices (13). Price dis-

persion is therefore the following function of the inflation rate

∆ = (1− )

µ
1− Π−1



1− 

¶− 
1−
+ Π

∆−1 (18)

1See Schmitt-Grohe and Uribe (2006, 2007).
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and in steady state:

∆ =
1− 

1− Π




Ã
1− Π

−1


1− 

! 
−1

 (19)

Similarly, from the first order condition of price setting, we can derive the following

relation between steady state marginal cost and steady state inflation:

 =
 − 1


³
1− Π

−1


´ 1
1−

(1− )
1

1−

"
1−  

¡
Π

¢
1−  

¡
Π

¢−1
#
 (20)

Substituting (19) and (20) in (17), evaluated in steady state, gives a relationship

between inflation and output that should be satisfied in steady state:

 
 =

⎡⎢⎢⎢⎢⎣
−1



1−Π−1



 1
1−

(1−)
1

1−

∙
1− (Π)



1− (Π)
−1

¸
−
−

µ
1−
1−Π



³
1−Π−1

1−

´ 
−1
¶

⎤⎥⎥⎥⎥⎦
1

1+

 (21)

where −
− is the steady state value of Ξ


 . This relationship can be interpreted as a

long-run Phillips curve.

A.4 Log-linearizations

For the demand side, the dynamic  block is obtained by log-linearizing equilibrium

conditions (6) and (7). It is convenient to define transformed variables eΞ = Ξ





and f 
 =  

 


 (with steady state values, respectively, of Ξ and 1) With these

transformations, the log-linearized  equation isbΞ = c 
 +

³bΞ+1 − c 
+1 − b+1 − b+1 +  − +1 − 

´
(22)

where bΞ ≡ ln eΞΞ is defined as followsbΞ = 1
c 
 + 2

h³c 
−1 − b´+ 

³c 
+1 + b+1 + b+1´i+  (23)

The hat variables are, as usual, log deviations from steady state: c 
 = ln


 −ln 



 = ln b =  −   ≡  
 

−1  is the steady state real interest rate, and

the disturbance  is a transformation of the preference shock .
2

2Note the term Π+1 is stationary, and we denote its (log) steady state (which is equal to the

steady state value of the ratio of nominal interest rate to trend inflation) by . This can be seen by

dividing through by Π which gives
Π

(Π+1Π+1)(Π+1Π)
=

Π+1 whose steady state we denote by
 and  ≡ log
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Equations (22) and (23) deliver, respectively, equations (4) and (5) in the main

text, by the use of a simplified notation, where  ≡ ln eΞ  ≡ lnΞ  ≡ ln 
 

 ≡ ln 
 and −1 ≡ ∗ 

3.

As explained in the text, we also replace rational expectations with subjective

expectations and, consistently with this assumption, we take the approximations

around the agents’ perception of the steady state values. Finally, since ∗ b+1 = 0
that term is suppressed.

To obtain the new-Keynesian Phillips curve, we start from the log-linear NKPC

developed in Cogley and Sbordone 2008, where the forcing variable is marginal costs4

b = 
∗
 b+1 + e−1c + 1

∗
 [( − 1)b+1 + +1] +  (24)

 = 2
∗
 [( − 1)b+1 + +1]

The parameters are defined in expression (11) in the main text.

Then we transform this equation in an inflation-output dynamic relation, by log-

linearizing expression (17) to obtain

c = (1 + )c 
 +  b∆ − bΞ (25)

which we substitute into (24). In this expression, b∆ ≡ ln∆∆ is obtained by

log-linearizing (18) around steady state, which givesb∆ ' 1bΠ + 2

³b∆−1 − b∆

´
 (26)

The parameters 1 and 2 are defined in the last two rows of (11) in the main text.

As most of the other parameters, they are time-varying because they depend on trend

inflation. In the main text, for analogy with the other log-linearized equations, instead

of notation c and b∆ we use the corresponding notation  −  and  − ,

respectively.

A.5 Structural arrays

The state vector is  =
£
      −1  1 

¤0
 The matrices

entering the PLM are defined as:

3The expressions for 1 and 2 are: 1 = −(exp()(1 + ))((exp() − )(exp() − )) and

2 = (exp())((exp()− )(exp()− ))

4With minor changes in notation, these equations corresponds to eqs. (46) and (47) in Cogley and

Sbordone (2008), simplified to reflect the absence of price indexation and strategic complementarities

in the present model. Details on the derivation of the equations can be found in the cited paper.
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 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −  −1 − 0 0 0 0 e
0 1 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 −1
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 −1 2 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (27)

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 + 1( − 1) 1 0 0 0 0 0 0 0 0

2( − 1) 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 2 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0  0

0 0 0 0 0 0 0 0  0

0 0 2 0 0 0 0 0  0

0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0 0  0

0 0 0 0 0  0 0  0

0 0 0 0 1 0 0 0 0 0

 0 0 0  0 − 1 −̄ 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 2 0 0 0  0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (29)

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (30)
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The expressions for the intercepts in  are

 = [1−  − 1( − 1)]̄ −  −   + e (31)

 = −2( − 1)̄
 = (1− 2) −1 − 1̄

 =  − 

 =
¡
1− 

¢


 =  − (1 + (1 + )2) + 2(1− )

where  and  are private-sector estimates respectively of steady-state output and

trend inflation, and  and  are the steady-state real-interest rate and real-growth

rate, respectively.

The matrices   and  also appear in the ALM. However,  is replaced by

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0  0

0 0 0 0 0 0 0 0  0

0 0 2 0 0 0 0 0  0

0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0 0  0

0 0 0 0 0  0 0  0

0 0 0 0 1 0 0 0 0 0

 0 0 0  0 − 1 −̄ 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 2 0 0 0  0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (32)

The selection matrix  used to evaluate the likelihood function is defined as

 =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎦  (33)
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B The relative importance of uncertainty about

feedback parameters and target inflation

To determine the relative importance of uncertainty about feedback parameters and

target inflation, we contrast a pair of models that shut down one or the other. The

first model deactivates uncertainty about   and  while retaining uncertainty

about trend inflation. All other aspects of the baseline specification are the same,

including the prior for ̄. In this case, the initial nonexplosive region expands to fill

most of the ( ) space (see the top panel in figure B1).
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Figure B1: Gray areas mark the nonexplosive region for 1. In the top row, the feedback

parameters are known and ̄ is unknown. In the bottom row, ̄ is known and the feedback

parameters are unknown.

Since the ALM is nonexplosive for most policies, the model has high fault tolerance

(see the left column of figure B2). Furthermore, private agents learn ̄ very quickly

(see the top left panel of figure B4). For these reasons, the model behaves much as

it does under full information. The optimal policy is similar, and impulse response

functions resemble those in figure 1 in the main text (see the left panel of figure B3).

Next we deactivate uncertainty about ̄ and reactivate uncertainty about  

and  We assume that the private sector adopts the same priors for the latter

coefficients as in figure 3 in the main text. At least qualitatively, the outcomes are

closer to those for the benchmark learning model than to those under full information.
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Temporarily explosive paths still emerge when  and/or  deviate too much from

prior beliefs (see the bottom panel in figure B1). Because of concerns about explosive

volatility, the bank chooses a policy close to the prior mode for  and  (see the

bottom left panel of figure B2). The transition is volatile (see the right panel of figure

B3), but learning is rapid because the true policy is close to initial beliefs (see the

right column of figure B4).

From this we conclude that opacity with respect to feedback parameters is more

costly. Uncertainty about target inflation is a less evil.

1.
01

1.05

1.
25

1.
5

1.
752.55

10

ψ
y

π = 0

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.25

1.
5

1.
752.55

10

ψ
y

π = 0.01

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

2.55
10

ψ
y

π = 0.02

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

5

10

ψ
y

ψ
π

π = 0.03

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

5

10 100

π = 0

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1
2.5

5 10

100

π = 0.01

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5
1.75

2.5

5

10

100

π = 0.02

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.25
1.5

1.75

2.5

5

5 10

100

ψ
π

π = 0.03

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

Learning

Learning

FI FI

Figure B2: Iso-expected-loss contours. In the left column, the feedback parameters are

known and ̄ is unknown. In the right column, ̄ is known and the feedback parameters

are unknown.
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Figure B3: Average responses under the optimized rule. In the left column, the feedback

parameters are known and ̄ is unknown. In the right column, ̄ is known and the feedback

parameters are unknown.
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Figure B4: Average estimates of policy coefficients. In the left column, the feedback para-

meters are known and ̄ is unknown. In the right column, ̄ is known and the feedback

parameters are unknown.
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C McCallum’s information constraint

McCallum (1999) contends that monetary policy rules should be specified in terms

of lagged variables because the Fed lacks good current-quarter information about

inflation, output, and other arguments of policy reaction functions. For instance,

the Bureau of Economic Analysis released the advance estimate of 2013.Q4 GDP on

January 30, 2014, one month after the end of the quarter. This constraint plays a

critical role in our analysis. To highlight its importance, we constrast the backward-

looking Taylor rule in equation (1) in the text with one involving contemporaneous

feedback to inflation and output growth,

 − −1 = ( − ̄) + ( − −1) +  (34)

Because actual central banks cannot observe current quarter output or the price level,

they would not be able to implement this policy. We examine it here in order to isolate

the consequences of lags in the central bank’s information flow.

There is also a slight change in the timing protocol. Private agents still enter

period  with beliefs about policy coefficients inherited from  − 1, and they treat
estimated parameters as if they were known with certainty when updating decision

rules. But now the central bank and private sector simultaneously execute their

contingency plans when period  shocks are realized. After observing current-quarter

outcomes, private agents update estimates and carry them forward to + 1.

C.1 The perceived law of motion

Because of the change in timing protocol, the perceived and actual laws of motion

differ from those in the text. As before, we assume that private agents know the

form of the policy rule but not the policy coefficients, so that at any given date their

perceived policy rule is

 − −1 = ( − ̄) + ( − −1) +e (35)

where

̃ =  + ( − ) + ( − )∆ + ̄ − ̄ (36)

is a perceived policy shock that depends on the actual policy shock  and the esti-

mated policy coefficients.
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The private sector’s model of the economy can be represented as a system of linear

expectational difference equations,

 = 
∗
 +1 + −1 +e (37)

where  is the model’s state vector, defined as before, and e is a vector of perceived
innovations. The matrices    and  entering the PLM are now defined as:

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 − −1 − 0 0 0 0 e
0 1 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 −1
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

− 0 0 0 − 0  1 ̄ 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 −1 2 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (38)

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 + 1( − 1) 1 0 0 0 0 0 0 0 0

2( − 1) 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 2 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(39)

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0  0

0 0 0 0 0 0 0 0  0

0 0 2 0 0 0 0 0  0

0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0 0  0

0 0 0 0 0  0 0  0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 2 0 0 0  0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (40)
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 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (41)

Note that the parameters of the policy rule enter the matrix , rather than  The

expressions for the intercepts in  are

 = [1−  − 1( − 1)]̄ −  −   + e (42)

 = −2( − 1)̄
 = (1− 2) −1 − 1̄

 =  − 

 =
¡
1− 

¢


 =  − (1 + (1 + )2) + 2(1− )

where  and  are private-sector estimates respectively of steady-state output and

trend inflation, and  and  are the steady-state real-interest rate and real-growth

rate, respectively.

The PLM is the reduced-form VAR associated with (37),

 = −1 +e (43)

where again  solves 
2
 − +  = 0 and  = ( −)

−1


C.2 The actual law of motion

The actual law of motion, obtained again by stacking the actual policy rule along

with the IS curve, the aggregate supply block, and the shock processes, is another

system of expectational difference equations,

 = 
∗
 +1 + −1 + (44)

The matrices   and  are the same as in equations (39), (40), and (41). All

rows of the matrix  agree with those of  except for the one corresponding to the
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monetary-policy rule (row 8). In that row, the true policy coefficients  replace the

estimated coefficients 

 (8 ) =
£ − 0 0 0 − 0  1 ̄ 0

¤
 (45)

To find the ALM, substitute ∗ +1 =  from the PLM into (44) and re-arrange

terms,5

 = −1 +  (47)

where

 = ( −)
−1 (48)

 = ( −)
−1

Comparing this expression to the one for the backward-looking rule, we observe that

the matrix  does not depend directly upon the perceived coefficients of the policy

rule, only indirectly through the PLM matrix 

C.3 Quantitative analysis

All other aspects of the model remain the same, including the prior on (̄   )
6

When private agents know the new policy, the optimal simple rule sets ̄ = 0  =

24 and  = 01. Like the model with a backward policy rule, the economy is highly

5The ALM can also be derived as follows. Outcomes are determined in accordance with agents’

plans,

 = −1 + ( −)
−1̃

A relation between perceived and actual innovations can be found by subtracting (44) from (37),

̃ =  + ( −)

Substitute this relation into agents’ plans to express outcomes in terms of actual shocks,

 = ( −)
−1−1 + ( −)

−1̃ (46)

( −) = −1 +̃

= −1 + + ( −)

( −) = −1 +

 = ( −)
−1−1 + ( −)

−1

6Results differ only slightly if the prior is based on estimates of the contemporaneous rule (equa-

tion 34) for the period 1966-1981.
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fault tolerant under full information (see the left column of figure C1). There is less

deflation, however, and the cumulative output gap and sacrifice ratio are both smaller

(see figure C2). Inflation again falls by 4.6 percentage points, but the cumulative

output loss is just 1.3 percent, implying a sacrifice ratio of 0.28 percent.

When agents learn about the new policy, the optimized Taylor rule sets ̄ =

0  = 14 and  = 01 Although the central bank reacts less aggressively to

inflation than under full information, the response is quite a bit stronger than for

the backward-looking rule. The bank can afford to react more aggressively because

explosive dynamics vanish and the learning economy becomes highly fault tolerant

(see the right-hand column of figure C1). The model therefore behaves more like

its full-information counterpart than did the economy with a backward-looking rule.

The learning transition is also shorter and less volatile than for the backward-looking

rule, and the sacrifice ratio is smaller (compare figure C3 with figure 6 in the text).

Learning is slower than for the backward-looking rule (compare figure C4 with figure

7 in the text), but that is because there is less transitional volatility in inflation and

output growth.

From these calculations we draw two conclusions. First, many of the difficulties

reported in the text follow from the fact that the central bank cannot observe current

quarter output and inflation. If a rule with contemporaneous feedback to inflation

and output were feasible, it would be superior. Secondly, the difference between con-

temporaneous and backward-looking Taylor rules is more pronounced under learning

than under full information.

16



1.05

1.25

25

1
0

ψ
y

π = 0

0 0.5 1 1.5 2 2.5
0

0.5

1

3

5

1
0

ψ
y

π = 0.01

0 0.5 1 1.5 2 2.5
0

0.5

1

9

10

1
5

ψ
π

ψ
y

π = 0.02

0 0.5 1 1.5 2 2.5
0

0.5

1

1.
01

1.
05

1
.2

5

25

π = 0

0.5 1 1.5 2

0.1

0.2

1.
3

1
.3

1
.5

24
7

π = 0.01

0.5 1 1.5 2

0.1

0.2

2.
75

35
7

ψ
π

π = 0.02

0.5 1 1.5 2

0.1

0.2

0.3

Figure C1: Isoloss contours for a contemporaneous Taylor rule. The left and right columns

depict outcomes under full information and learning, respectively. The optimal rules are

marked by an asterisk (full information) and diamond (learning).

0 2 4 6 8 10 12 14 16 18 20

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Quarters

 

 

Inflation Gap
Nominal Interest Gap
Output Gap

Figure C2: Average responses under a contemporaneous Taylor rule optimized for full

information.
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Figure C3: Average responses under the contemporaneous Taylor rule optimized for

learning.
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D Policy shocks

The baseline calibration for  reflects a tension between two considerations. On the

one hand, estimated policy reaction functions never fit exactly, implying   0 On

the other, a fully optimal policy would presumably be deterministic, implying  = 0

The baseline specification compromises with a small positive value ( = 10 basis

points per quarter).

If the true value of  were zero and known with certainty, the signal extrac-

tion problem would unravel, with agents perfectly inferring the other three policy

coefficients after just three periods. This would not happen in our model even if

 were zero because the agents’s prior on  encodes a belief that monetary-policy

shocks are present. Prior uncertainty about  is enough to preserve a nontrivial

signal-extraction problem.

Furthermore, since the initial nonexplosive region depends neither on  nor on

prior beliefs about  the central bank’s main challenge in a  = 0 economy would

be the same. It follows that the optimized rule should be similar. When  = 0

with all other aspects of the baseline economy held constant, the optimized rule sets

̄ = 001  = 015 and  = 01 Thus target inflation and the response to output

growth are about the same, and the response to inflation is a bit weaker. The same

is true when  = 0 and the prior standard deviation for  is 50 percent lower than

the baseline value. In both cases, isoloss contours, impulse response functions, and

average estimates of policy coefficients under the optimized rule resemble those in the

text (see figures D1-D5).

That agents entertain a belief that policy shocks are present is critical. Whether

actual policy shocks are small or zero is secondary.
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Figure D1: Average responses under the Taylor rule optimized for learning:  = 0

baseline prior.
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Figure D2: Average estimates of policy coefficients under the Taylor rule optimized for

learning:  = 0 baseline prior.
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Figure D3: Average responses under the Taylor rule optimized for learning:  = 0

prior standard deviation equal to half its baseline value.
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Figure D4: Average estimates of policy coefficients under the Taylor rule optimized for

learning:  = 0 prior standard deviation equal to half its baseline value.
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E A two-tier approach

In the baseline model, the central bank introduces two reforms at once, reducing

target inflation and strengthening stabilization by responding more aggressively to

inflation and output growth. Here we analyze a two-tier approach that separates the

reforms, with policymakers first switching to a rule designed to bring target inflation

down and thereafter changing feedback parameters to stabilize the economy around

the new target.

In particular, we assume that for a period whose length is exogenous the poli-

cymaker reduces ̄ but continues with response coefficients inherited from the old

regime. After this initial period, when beliefs about ̄ have had a chance to adjust,

the policymaker adjusts the reaction coefficients. Once again, all other aspects of the

baseline specification remain the same. Here we examine models in which the first

stage lasts 10 and 20 quarters, respectively. Figures E1-E5 portray the results.

The two-tier approach prolongs the transition and raises expected loss. Delaying

an adjustment of response coefficients postpones but does not circumvent the problem

of coping with locally-explosive dynamics. The potential for explosive dynamics now

emerges at the end stage 1 rather than the beginning of the disinflation, but it does

not go away.

A separation of reforms also retards learning. In stage 1, beliefs about  and

 harden around old-regime values because agents observe more weak responses to

inflation and output growth, and this hinders learning about  and  in stage

2. Less obviously, the separation of reforms also retards learning about ̄ in stage

1. Wherever ̄ appears in the likelihood function it is multiplied by  Since 

remains close to zero during stage 1, ̄ is weakly identified and hard to learn about.

One of the purposes of a simultaneous reform is to strengthen identification of ̄ by

increasing  The two-tier approach also postpones this until stage 2.

Optimized Taylor rules set  = 2 percent per annum,  = 015 and  = 015

or 02 (see the diamonds in figure E5). Target inflation is therefore slightly higher

than for simultaneous reforms, the inflation response is a bit weaker, and reaction

to output growth is about the same. The transition is longer and more volatile

(compares figures E1 and E3 with figure 6 in the text), learning is slower (compare

figures E2 and E4 with figure 7 in the text), and expected loss is more than 5 times

greater. Furthermore, expected loss is higher the longer is the first stage.
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Figure E1: Average responses under the Taylor rule optimized for first stage lasting 10

quarters.
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Figure E2: Average estimates of policy coefficients under a Taylor rule optimized for a first

stage lasting 10 quarters.
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Figure E3: Average responses under the Taylor rule optimized for first stage lasting 20

quarters.
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Figure E4: Average estimates of policy coefficients under a Taylor rule optimized for a first

stage lasting 20 quarters.
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Diamonds mark the optimal simple rule in each case.
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F Single-equation learning

Agents in the baseline model exploit cross-equation restrictions on the ALM when

estimating policy coefficients. Here we step back and consider a less sophisticated

form of learning involving single-equation estimation of the policy rule. The priors

are the same as in the benchmark model, but we now assume that agents neglect

cross-equation restrictions and work with the conditional likelihood function for the

policy equation,

ln (∆| ∆) = −1
2

P

=1 


½
ln2 +

(∆ − (−1 − ̄)− ∆−1)2

2

¾


(49)

The parameter  discounts past observations. Two forms of single-equation learning

are considered, with  = 1 and   1 respectively, to imitate decreasing- and

constant-gain learning. For the discounted case,  is set equal to 09828 so that the

discount function has a half-life of 40 quarters. The log prior is mulitplied by 

because date-zero beliefs should also be discounted when agents are concerned about

structural change.

Although estimates of policy coefficients sometimes differ from those in the base-

line learning model, the optimal policies are essentially the same (see figure F1).

Hence the choice of policy does not depend on whether private agents use single-

equation or full-system estimators, nor on whether past observations are discounted.

That results are similar for discounted and undiscounted learning is not surprising

because the samples are short and  is not far from 1 in the discounted case. That

the results are similar to those for full-system learning is a statement about the in-

formation content of cross-equation restrictions. Evidently those restrictions are less

informative under learning than in a full-information rational-expectations model. In

the latter, private decision rules are predicated on knowledge of the true policy coef-

ficients and therefore convey information about them. In a learning model, however,

private decision rules are predicated on estimates of policy coefficients, not on true

values. Hence non-policy equations in the ALM encode less information about the

true policy.
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Figure F1: Iso-expected loss contours. The left and right columns refer to undiscounted

and discounted least squares, respectively.
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Figure F2: Average responses under the optimized rule. The left and right columns refer

to undiscounted and discounted least squares, respectively.
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Figure F3: Average parameter estimates under the optimized rule. The left and right

columns refer to undiscounted and discounted least squares, respectively.
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