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Abstract

We empirically investigate the term structure of variance risk pricing and how it varies over time.
Estimating the price of variance risk in a stochastic-volatility option pricing model separately for options
of different maturities, we find a price of variance risk that decreases in absolute value with maturity but
remains significantly different from zero up to the nine-month horizon. We show that the term structure is
consistently downward sloping both during normal times and in times of stress, when required
compensation for variance risk increases and its term structure steepens further.
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1 Introduction

The risks facing investors have a rich term structure with some risks relevant at shorter ma-
turities and other risks relevant at longer maturities. After mostly focusing on bonds, the
analysis of how risks at different maturities are priced has more recently shifted to equities,
providing new moments for asset pricing models to match (Cochrane, 2017). In particular,
van Binsbergen, Brandt, and Koijen (2012) first document a downward-sloping term struc-
ture of equity risk premia, suggesting significantly higher risk premia for short horizons
than for long horizons and rejecting the predictions of the workhorse asset pricing models
of Campbell and Cochrane (1999) and Bansal and Yaron (2004). While similar patterns
have since been found in various asset classes,the evidence is still subject to debate.! Using
equity dividend strips, Bansal et al. (2021) show evidence that the term structure of equity
risk premia is weakly upward sloping during normal times and inverts during recessions.
Giglio, Kelly, and Kozak (2023) confirm this using synthetic dividend strips going back to
the 1970s. Gormsen (2021) shows that the slope of the term structure is countercyclical to
the price-dividend ratio. These results highlight the importance of time-series variation in
the term structure of risk premia.

Because variance risk is an important driver of equity risk premia, how it is priced in
the term-structure is important to understand the results above. Using proprietary data
on variance swaps, Dew-Becker et al. (2017) find that investors are willing to pay for in-
surance against variance risk at the one-month maturity but not at longer maturities, sug-
gesting that the compensation for variance risk also has an important term structure com-
ponent. In this paper, we focus on the term structure of variance risk pricing and its varia-
tion over time. We study two questions. First, is volatility risk never priced at longer hori-
zons? Second, is there important temporal variation underlying the average term structure
of volatility risk pricing? To answer these questions, we use standard index options data
and the simple one-factor stochastic variance model of Christoffersen, Heston, and Jacobs
(2013) which yields a single parameter capturing the per-unit price of variance risk.> Our
approach is, first, to discipline the physical parameters of the return process using the un-
derlying index returns and, then, to estimate the parameter governing the price of variance

risk separately for options in distinct maturity buckets. This allows us to give clear answers

ISee van Binsbergen and Koijen (2016) and Giglio, Kelly, and Kozak (2023) for overviews.

2Note that a positive price-of-variance-risk parameter implies that investors require compensation for ex-
posure to variance risk. The literature defines the variance risk premium as the difference between expected
variance under the physical and risk neutral measures. This is the payoff to being long variance and tends
to be negative, consistent with investors requiring compensation for bearing variance risk (Carr and Wu,
2009). To avoid confusion, we tend to think in terms of positive numbers throughout, i.e. the absolute value
of the price of variance risk.



to our first-order questions whether long horizon variance risk is priced and whether the
relative pricing at different maturities (per unit of risk) varies systematically over time.

For our unconditional estimates, we find a significant price of variance risk for matu-
rities up to nine months (options with 125 to 190 trading days to expiry). This finding
is in contrast to Dew-Becker et al. (2017), who find a significant variance risk premium
only at the shortest, one-month horizon. Our finding is robust to estimating the physical
process of returns separately from options prices, and to allowing the expected process of
returns to vary by maturity. The differences between our results and those of Dew-Becker
et al. (2017) may be in part due to the more liquid nature of the market for index options
we use to estimate the price of variance risk relative to their results which are found in
the significantly less liquid market for variance swaps. In addition, we find that the term
structure of the price of variance risk (in absolute value) is downward sloping, with short-
maturity options exhibiting significantly higher risk premia than longer maturity options
across maturities of up to a year.

Finally, we examine time-series variation in the term structure of variance risk pricing.
We find a robust negative slope to the compensation for variance risk across periods with
high and low volatility, low and high GDP growth and and low and high price-dividend
ratios. These differing market conditions shift the level of the term structure of the com-
pensation for variance risk, but the slope remains downward sloping in our estimates.
That the slope of the term-structure of variance risk premia always remains downward
sloping in the time series starkly contrasts to similar analysis on the term-structure of the
equity risk premia in Gormsen (2021), Bansal et al. (2021), and Giglio, Kelly, and Kozak
(2023).

Our three main results, (i) that variance risk is priced beyond the short horizon, (ii)
that the term-structure of variance risk premia is downward sloping in absolute value,
and (iii) that it remains so under all market conditions, have important implications for
asset pricing models. Our first result, the strictly non-zero price of variance risk at short
and medium horizons, implies that not just the immediate volatility shocks but also the
shocks to expected volatility are priced; a fundamental difference to the results of Dew-
Becker et al. (2017). This is consistent with standard asset pricing models (e.g. Bansal and
Yaron (2004); Bansal et al. (2012, 2014)) where shocks to future volatility play a key role
in matching asset pricing data such as the equity premium. On the other hand, our second
result, that the average term-structure of variance risk premia is downward sloping, chal-
lenges the standard models. While the long-run-risk model of Bansal and Yaron (2004)
as well as the rare-disaster model of Wachter (2013) correctly predict a negative price per
unit of variance risk, the models cannot quantitatively match its decline with maturity (in
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absolute value). Finally, models that capture the variation in the slope of equity risk pre-
mia via variation in risks, such as Gormsen (2021) and Bansal et al. (2021), may not be able
to match the downward sloping term-structures we obtain under all market conditions,
our third result. Capturing both the upward/downward variations in the term-structure
of equity premia and the constantly downward sloping term-structure of variance risk
premia that we document constitutes a challenge and invites new theories, e.g. Andries,
Eisenbach, and Schmalz (2023) who rationalize the evidence on equity risk premia via

variations in market liquidity.

Related literature. Most of the existing option pricing literature has steered clear of the
question whether the variance risk pricing varies across maturities. For example, work by
Coval and Shumway (2001) or Carr and Wu (2009) measures variance risk premia for
options with a single maturity; Christoffersen, Heston, and Jacobs (2013) pool all matu-
rities when estimating the price of variance risk. Our repeated estimation of the price of
variance risk on subsamples of the data differs from their approach. In contrast to Gruber,
Tebaldi, and Trojani (2021), and Bardgett, Gourier, and Leippold (2019), we offer non-
parametric or “model-free” results that are inconsistent with a constant price of variance
risk, but consistent with a horizon-depend price of risk, as derived in Andries, Eisenbach,
and Schmalz (2023).

Outside the standard options pricing literature, other papers have investigated the term
structure of variance risk premia, using different data sets and different methodologies
than the present paper. As noted above, Dew-Becker et al. (2017) use proprietary data
on variance swaps to estimate term-structure models, similar to Amengual (2008) and
Ait-Sahalia, Karaman, and Mancini (2020), but add realized volatility as a third factor
in addition to the first two principle components (level and slope). They find that only
shocks to realized volatility are priced, implying a term structure that is steeply negative
at the short end (a one-month horizon) but essentially flat at zero beyond that. Both the
data (index options as opposed to variance swaps) and methodology (estimation of an
options pricing model as opposed to price of variance swaps) we use are sharply different
and complementary to Dew-Becker et al. (2017).

One potential explanation for our finding of a non-constant price of variance risk is
a risk of jumps that have intensities or prices that vary by horizons. Some recent option
pricing models with jumps find a non-constant variance risk pricing in the term-structure
(Gruber, Tebaldi, and Trojani, 2021; Bardgett, Gourier, and Leippold, 2019). However, a
distinguishing feature of both papers is a change of slope between high and low volatility
regimes, inconsistent with the results we obtain from the data.
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Less closely related are Choi, Mueller, and Vedolin (2017), who find a negative and
upward-sloping term structure of variance premia in the Treasury futures market. Our
conditional results on the relationship between current market volatility and the term
structure of risk prices are related to Cheng (2018) who studies the returns of hedging
volatility with VIX futures. Barras and Malkhozov (2016) find that institutional factors
help explain differences in estimates of variance risk premia in the equity and option mar-
kets.

The paper proceeds as follows. Section 2 presents our data sources and parametric esti-
mation procedure. Section 3 gives the empirical results and Section 4 provides robustness

checks. Section 5 concludes.

2 Data and empirical results

2.1 Data sources and summary statistics

We use daily closing data of European SPX index options and SPX index levels from Jan-
uary 1996 to January 2018 from OptionMetrics. S&P 500 returns, excluding dividends,
from January 1990 to January 2018 come from CRSP. The risk-free rate for a given daily
return observation is defined as log(1 + r¢) /252, where r; is the average effective federal
funds rate for the month.

We clean the data by removing duplicate observations of calls or puts on the same day
that have the same expiration date, strike price, and midprice. Next, we keep only options
that have a maturity between 20 and 252 trading days, inclusive, on the day of observation.
Using trading days to measure maturity is essential. The GARCH estimation treats the
index return series as a continuous series without weekends. To be consistent, the option
maturities should therefore also be expressed in trading days. We follow Bakshi, Cao, and
Chen (1997) in excluding shorter-maturity options to avoid microstructure noise close to
expiration, and we exclude longer-maturity options because they are thinly traded. We
also follow Bakshi, Cao, and Chen (1997) in excluding any options that have quoted bid
prices below $3/8 to avoid discretization issues or options that do not obey the futures
arbitrage constraints: for a call with maturity 7, C(t) > max{0,S; — X;e™ """}, and for a
put, P(7) > max{0, X;e T — S;}.

We restrict our attention to out of the money options to avoid well known issues with
the liquidity of in the money options. On every Wednesday, for each maturity we select the
out of the money option from each of the 6 most highly traded strikes: if the strike is greater

than the stock price we choose the call; if the strike is less than the stock price we choose
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Table 1: Summary statistics of options pricing data. The table shows summary statistics
sorted by moneyness and maturity of SPX index options prices in the full data sample used

for this paper from January 1996 to January 2018.

Summary Statistics by Maturity

Maturity <30 30-60 60-90 90-120  120-180 >180  All
Count 3,419 6,810 4,184 2,318 4,357 5317 26,405
Implied volatility 21.41 21.46 22.14 21.64 21.51 2142 21.58
Mid-price 11.61 18.62 25.98 30.14 36.79 4741  28.68
Bid-ask spread 1.03 1.45 1.82 1.87 1.96 2.31 1.75
Summary Statistics by Moneyness
Moneyness <096 0.96-0.98 0.98-1.02 1.02-1.04 1.04-1.06 >1.06 All
Count 6,428 2,296 6,252 2,122 1,800 7,507 26,405
Implied volatility = 18.82 18.00 18.87 20.36 22.05 27.53  21.58
Mid-price 26.48 39.26 40.03 30.56 26.83 17.80  28.68
Bid-ask spread 1.79 1.91 1.94 1.75 1.73 1.51 1.75

the put. We convert all put prices to call prices by put-call parity, ignoring dividends.
Table 1 presents summary statistics for the sample of 26,405 option-day observations
used in the parametric analysis. In this sample, the average implied volatility is increasing
with maturity. When sorted by moneyness, we also see evidence of both put skew and
the volatility smile; out of the money puts have much higher implied volatility than calls
and, in general, out of the money options have higher implied volatility than at the money
options. Liquidity improves at longer maturities, with the mean bid-ask spread at around
9% of the average mid-price for short maturities and declining to around 5% at longer

maturities.

2.2 Parametric procedure

We follow Christoffersen, Heston, and Jacobs (2013, hereafter CHJ) and Heston and Nandi
(2000) to describe the dynamics of stock return and variance. Specifically we assume that
the stock price S; follows a GARCH-in-means process and the one-period excess return

has variance h;, as follows:

IOgSt = lOgSt_l + 1+ <“I/l — %) I’lt + htZt
2
ht=w+Bhy 1 +u (thl — TV hhl) ,



with z¢ ~ N(0,1), where u governs the equity premium, w governs the unconditional
mean of the shock process, B governs its persistence, a captures the kurtosis of the distri-
bution, i.e. how fat the tails of the variance process are, and y makes the distribution asym-
metric and captures the correlation of the variance with the stock return. The stochastic
discount factor is given by

¢ t
% = (S—é) exp <‘5t + nghs +¢ (b1 — hl)) ,
where § and 7 capture time preferences, and ¢ captures aversion to equity risk. Our fo-
cus is on the parameter ¢ which multiplies variance in the stochastic discount factor and
therefore captures aversion to variance risk “per unit of variance.” We therefore refer to ¢
as the price of variance risk (PVR) parameter.

Given the physical GARCH parameters © = {w, B, «, 4,7} and the PVR parameter ¢,
the equity risk aversion ¢ is pinned down as ¢ = — (y — % + ’y) (1—-2al) +y— % (see
Heston and Nandi (2000) and CH]J for additional details). CHJ show that the processes
can be risk-neutralized as

1
log St =log Sy—1 + 1t — 5 hi + £/ hf zf,

2
hi = w" + iy +a* (Zil -7 h?—l) /

with
1 1
K = h, @' =
T oa ™ Y T 2
1

S T T T

and z; ~ N(0,1). To compensate for variance risk, the risk neutral variance process has
a higher long-run mean and higher persistence for > 0. The PVR parameter ¢ therefore
directly translates into the variance risk premium E[h¢| — E[h}], entering multiplicatively
and therefore capturing the per-unit pricing of variance risk.

CHJ estimate the GARCH parameters and a common PVR parameter ¢ jointly with
a likelihood that incorporates both returns and option prices. We follow their approach,
except that we do not smooth the inputs by computing a volatility surface but, instead,
smooth the outputs from the estimation procedure. This ensures that we are basing our

estimates on actual observed prices and that we do not inflate our dataset with interpo-



lated values. Other than that, we adapt their joint estimation procedure for the full sample
but, in contrast to them, allow ¢ to vary by maturity category.

Define daily index returns R; = log(S;/S;_1) and the risk-free rate ;. The return log
likelihood is only a function of the GARCH parameters ©® = {w, B, &, 1, v}

£t(©) = — 2 Y toghi+ L (Re—ri— (=1 i
ret = 2t:1 og 1 I t t |2 5 t ’
where
b W+
T 1 —ay?

Define Black-Scholes vega weighted pricing errors as

. — Pimkt _ Pimod
BSVK
where PPk is the market price of option i, BSV™K is the market Black-Scholes vega of
option i, and P™°? is the model price for option i. Note that PM°? depends on both the
GARCH parameters © as well as the PVR parameter ¢ for the maturity category to which
option i belongs. We use four maturity categories and assign different PVR parameters
€1,...,C4 for options with maturities of 20 to 60 days, 60 to 125 days, 125 to 190 days,
and 190 to 252 days, respectively. Define & = {1, ..., {4}. Assume that the Black-Scholes
vega weighted pricing errors are i.i.d. normal with mean zero and variance o>. The option

likelihood is then a function of ®, &, and ¢?:

1Y €2
o) 2 - _ = 2 1
Copt (@, E o ) 5 ; <log o+ _(72>
Maximum likelihood can then be used to estimate both ® and E,

{@, g, 32} = argmax (ﬂret + ﬁopt) .
{0,802}

2.3 Sample splits

Our interest is in whether estimated PVR parameters vary with the state of the economy
as well as with the horizon of the option. To explore this question, we calculate the likeli-
hoods for several splits of the data by VIX levels, price-dividend ratios and GDP growth,

and compare the estimated variance risk pricing across horizons and across splits. In par-



Table 2: Summary statistics of options pricing data by subsamples. The table shows sum-
mary statistics of SPX index options prices in the sample used for this paper from January
1996 to January 2018 for sample splits by high and low VIX, low and high price-dividend
(PD) ratio, and low and high GDP growth; and, for implied volatility, by maturity.

Full sample VIX split PD ratio split GDP growth split
High Low Low High Low High

Implied volatility 21.58 2523 1541 2334 20.50 24.30 19.46
Mid-price 28.68 31.53 2272 30.04 27.17 31.23 25.95
Bid-ask spread 1.75 1.88 150 195 1.62 2.06 1.49

Implied volatility by maturity

<30 21.41 2543 1445 2297 20.62 24.59 19.31
30-60 21.46 25,56 14.76 23.48 20.44 24.64 19.33
60-90 22.14 26.12 1546 24.13 2041 24.50 19.49
90-120 21.64 25.69 15.68 23.59 20.60 24.36 19.69
120-180 21.51 2470 16.01 2335 2046 24.19 19.57
>180 21.42 2407 1637 2236 20.59 2347 19.53

ticular, we obtain daily closing VIX index values from the CBOE Indexes data, GDP growth
data on a quarterly basis from the BEA, and monthly data on the S&P 500 price-dividend
ratio from S&P 500 Ratios via Nasdaq Data Link. For each of these variables, we split our
samples into “low” and “high” based on whether the variable is below or above its median
value over our sample period. Table 2 reports summary statistics over these subsamples.
Times of high volatility, low PD ratios and low GDP growth are associated with greater
implied volatility and higher option prices. However, these times are also associated with
higher option implied volatility at short maturities than at long maturities. Our analysis
below is designed to determine how much of these differences are due to the underlying

index return process versus the price of variance risk.

3 Estimation results

3.1 Term structure of the price of variance risk

Figure 1 shows the term structure of the PVR parameter ¢ estimated on the full sample.
The paramater is significantly positive (¢ > 1) at all maturities except the longest maturity
(190-252 days), indicating that investors require compensation for bearing variance risk

and considerably more so (per unit of variance) at shorter horizons. Table 3, column (1)
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Table 3: Estimation on full sample and subsamples. The table shows shows estimates of the
model using joint maximum-likelihood estimation for the full sample as well as for sample
splits by high and low VIX, low and high price-dividend (PD) ratio, and low and high GDP
growth. GARCH processes are held constant over both splits in columns (2)—(7). The top
panel shows the estimates for GARCH parameters, the middle panel shows estimates for the
variance risk preference parameter, ¢, and the bottom panel shows the likelihood from the
fit to returns, g, the fit to options prices, ®p, and the joint likelihood which is the sum of
the returns likelihood and the options prices likelihood.

(1) (2) (3) (4) (5) (6) (7)
Full sample VIX split PD ratio split ~ GDP growth split
High Low Low High Low High
B 0.735 0.747 0.725 0.733
(0.004) (0.003) (0.004) (0.003)
w 1.3x107° 1.1x107¢ 1.3x107¢ 1.3x107°
(0.02x107%)  (0.02x1079) (0.03x107°) (0.03x107°)
% 451.24 463.62 459.38 445.72
(5.72) (4.35) (6.55) (6.14)
$20—60 1.212 1.896  1.065 1377 1166  1.321 1.169
(0.018) (0.020) (0.019) (0.026) (0.020) (0.026) (0.020)
$60—125 1.108 1.621  1.020 1205 1.082  1.198 1.065
(0.013) (0.015) (0.014) (0.018) (0.015) (0.015) (0.014)
$125-190 1.025 1414  1.000 1116 1.007  1.105 1.000
(0.010) (0.011) (0.010) (0.014) (0.011) (0.013) (0.013)
$190-252 1.000 1.320 1.000  1.056  1.000  1.048 1.000
(0.009) (0.010) (0.009) (0.012) (0.009) (0.011) (0.007)
PR 29,678 29,740 29,683 29,690
Do 70,951 44,065 30,039 25481 45,614 30,657 40,397
PR + Do 100,630 103,844 100,779 100,745
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Figure 1: Term structure of variance risk pricing. The figure shows estimates of the PVR
parameter ¢ by maturity on the full sample (Table 3, column 1). Shaded areas indicates 95%
confidence intervals.

shows the full estimation results, including the GARCH parameters «, p and -y. The term
structure of ¢ is monotonically decreasing and the declines are statistically significant from
the first to the second and from the second to the third maturity bucket. Estimates of the
parameters of the GARCH process are similar to those in CHJ, who in their joint estimation
find B = 0.756, & = 1.41x1076 and ¥ = 515.57. Our estimated GARCH parameters are
lower than theirs, implying a lower autocorrelation of variance for our GARCH process.
This may be due to the longer time series we use, which extends beyond 2009 when their
estimation ends and includes the relatively low volatlity period from 2013 to 2018 as well
as spikes in volatility in 2010 and 2011.

3.2 Term structure in different subsamples

To study how the pricing of variance risk and its term structure vary with different states
of the economy, we estimate the term structure of the PVR parameter ¢ separately on sub-
samples of the data. Figure 2 shows estimates of the term structure of ¢ when splitting
the sample into high/low VIX, price-dividend ratio, and GDP growth. Table 3, columns
(2) to (7) show the full estimation results, including the GARCH parameters «, f and 7.
Periods of high VIX, low price-dividend ratio and low GDP growth all indicate stressed
states of the economy. [rrespective of how we identify stressed times, we see that investors
require significantly higher compensation for variance risk and the slope of the term struc-
ture remains downward sloping. Moreover, across these sub-samples, the PVR parame-
ter is significantly greater than 1 out to the 60-125 day bin, showing that the result that
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Figure 2: Term structure in different subsamples. The figure shows estimates of ¢ on sub-
samples and compares them to the full-sample estimates (Table 3, columns 2-7). Shaded

areas indicates 95% confidence intervals.

longer-maturity options display a significant price of variance risk persists even in these
subsamples.

The difference between the term structures is starkest for the VIX split where both
the level of the curve and the slope (in absolute magnitude) increase the most in stressed
times compared to normal times. This is consistent with the VIX being conceptually closest
as the relevant measure to split the price of variance risk on. The VIX split also provides
considerably more variation and is reasonably orthogonal to the other sample splits. While
the VIX split has a correlation of 0.230 with the GDP growth split which only varies at
quarterly frequency, it is uncorrelated with the PD ratio split which varies at the same
daily frequency (correlation of 0.001). Moreover, across maximum likelihood estimates,
high VIX periods display the greatest improvement in the total log likelihood of any sub-
sample split, again emphasizing the close relationship between the VIX and the price of

variance risk (bottom of Table 3).

4 Robustness

4.1 Jointvs. sequential estimation

Our baseline specification follows CH]J in estimating the PVR parameter ¢ jointly with the
GARCH parameters «, B, and 1. Figure 3 shows the coefficient estimates for ¢ if we do the
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Figure 3: Estimating parameters jointly or sequentially. The figure shows estimates of ¢
by maturity on the full sample, comparing the joint estimation of GARCH parameters and
PVR parameter (Table 4, column 1) to a sequential estimation, first estimating the GARCH
process using returns and then estimating ¢ using option prices (Table 4, column 2). Shaded
areas indicates 95% confidence intervals.

estimation in two sequential steps, first estimating the GARCH parameters without mak-
ing use of the options data and then estimating the PVR parameter with the options data.
Table 4, column (2) shows the full estimation results, including the GARCH parameters
«, B and <y while column (1) repeats the joint estimation of the benchmark specification.
While the resulting estimates show a level shift and the slope becomes flatter it is still
significantly downward sloping.

Comparing the likelihoods, we see that the total likelihood of the joint estimation is con-
siderably higher (bottom of Table 4), consistent with the importance of the options data in-
forming the GARCH parameters (as in CHJ). The difference in option pricing parameters
suggest that options prices imply higher volatility and lower persistence of volatility than
would be gained by estimation of the GARCH process using returns alone. One possibility
is that the period of the sample estimation has seen relatively high volatility compared to
the physical process, which option prices foresee but which the GARCH process is unable
to pick up.

4.2 Allowing the GARCH parameters to vary with horizon

Our benchmark specification only allows the PVR parameter ¢ to vary with the horizon
but maintains a single set of GARCH parameters &, B, and . Figure 4 shows the coefficient
estimates if we allow the GARCH parameters to vary with the horizon. Table 4, columns
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Table 4: Sequential estimation and allowing the GARCH parameters to vary with horizon.
The table shows shows alternative specifications of the unconditional estimates of the model.
Column (1) uses joint maximum-likelihood estimation for the full sample, column (2) uses
sequential estimation, first estimating the GARCH process using returns and then estimating
¢ using option prices, and columns (3)—(6) use joint estimation which allow both GARCH
parameters and ¢ to vary by maturity. The top panel shows the estimates for GARCH param-
eters, the middle panel shows estimates for the variance risk preference parameter, ¢, and
the bottom panel shows the likelihood from the fit to returns, ®g, the fit to options prices,

®p, and the joint likelihood which is the sum of the returns likelihood and the options prices
likelihood.

(1) (2) (3) (4) (5) (6)
Joint Sequential Joint, by maturity
B 0.735 0.819 0.714 0.705 0.775 0.787
(0.004) (0.013) (0.006) (0.007) (0.009) (0.006)
® 1.3x107%  39x107° 1.5x107® 1.2x107® 1.2x10°® 1.1x107°
(0.02x107%) (0.0x107°) (0.03x107%) (0.04x107%) (0.05x107°) (0.04x1079)
v 451.24 193.63 429.69 488.67 417.86 436.44
(5.72) (1.94) (5.14) (10.19) (4.42) (11.50)
2060 1.212 1.240 1.227
(0.018) (0.003) (0.015)
E60-125 1.108 1.217 1.141
(0.013) (0.002) (0.019)
&125-190 1.025 1.200 1.000
(0.010) (0.003) (0.020)
&190-252 1.000 1.211 1.000
(0.009) (0.005) (0.017)
dr 29,678 29,873 29,724 29,669 29,666 29,654
dp 70,951 61,794 25,229 19,304 13,404 12,524
D + Po 100,630 91,667 54,952 48,973 43,070 42,178
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Figure 4: Allowing the GARCH parameters to vary with horizon. The figure shows esti-
mates of { and the GARCH parameters, comparing the estimation where GARCH parameters
are fixed across maturities (Table 4, column 1) to the estimation which allows both GARCH
parameters and ¢ to vary by maturity (Table 4, columns 3-6). Shaded areas indicates 95%

confidence intervals.
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Figure 5: Allowing GARCH parameters to vary with sample splits. The figure shows es-
timates of ¢ on subsamples, allowing for the GARCH parameters to vary with the sample
splits (Table 5). Shaded areas indicates 95% confidence intervals.

(3) to (6) show the full estimation results. While this additional flexibility results in some
variation in the GARCH parameter estimates across horizons, the effect on the estimates
of ¢ is negligible (top-left panel of Figure 4). Considering the variation in the GARCH
parameters, only « and B show a somewhat monotonic term structure. The estimates for a
and g from short-horizon options suggest lower persistence of the variance and fatter tails
in the distribution of shocks to the variance process, respectively. Both are conceptually
consistent with our main finding of a higher price of variance risk (in absolute value) at

shorter horizons.

4.3 Allowing GARCH parameters to vary with sample splits

Our benchmark specification estimates one set of GARCH parameters and only estimates
the PVR parameter ¢ separately on different subsamples. Due to the auto-regressive na-
ture of the process, estimating separate GARCH parameters for different subsamples is
conceptually problematic if the subsamples are not sufficiently long. This concern is pazi-
ticularly strong for our VIX split and our PD ratio split which can vary at daily frequency.

Figure 5 shows the coefficient estimates of ¢ if we do allow the GARCH parameters to
vary with the sample splits. Table 5, columns (2) to (7) show the full estimation results
while column (1) repeats the estimation of the benchmark specification. The effect on the
term structures of ¢ is negligible if we split the sample on PD ratio and on GDP growth.
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However, in case of the VIX split, the ordering of the term structures changes as now the
PVR parameter is higher in each of the subperiods than in the full sample period and
higher in the low-VIX sample than the high-VIX sample. This is due to the fact that the
GARCH parameters change considerably in the two subsamples. In the high VIX sample,
we estimate considerably larger kurtosis « and smaller correlation with returns 7 (and
slightly lower persistence ). The reason that the GARCH process impacts the pricing of
variance risk is intuitive: Options prices may be higher at longer maturities either because
of a lower distaste for variance risk at longer horizons or because variance is expected to be
lower in the future. Again, this emphasizes the importance of joint estimation of returns
and options prices.

The finding that the PVR parameter is higher in each sub-period than in the full sam-
ple deserves some discussion and interpretation. We note that the estimated variance of
variance that results from estimating the returns process from either high- or low-variance
sub-periods is artificially low, compared to the true returns process, which has a chance to
move from a high- to a low-variance regime, reflecting relatively high variance of variance.
As a result, the estimated model would have trouble making sense of high option prices
in any sub-period, unless it assumes a high price of variance risk (in absolute value). The
joint estimation solves this problem by inferring different GARCH parameters for the two
periods based on the option prices as well as the returns process, which then leads to dif-
ferent VRP parameters that could be hard to compare. The fact that the model fit does not
greatly differ between the results in which GARCH is separated for the entire sample as
opposed to separately estimated in each subsample while the estimated price of variance
risk differs quite starkly suggests that the reason for the latter findings is more likely to
be a change in the pricing of variance risk rather than a change in the underlying returns

process.

5 Conclusion

We provide estimates of the term structure of variance risk pricing and how it varies over
time by estimating the price of variance risk in a Heston (1993) model, based on the em-
pirical approach developed by Christoffersen, Heston, and Jacobs (2013). We find that the
price of insurance against increases in volatility varies with the horizon of the risk insured:
short-term insurance is more expensive than long-term insurance, and this effect is more
pronounced in times of higher volatility. The price is significant across short- and longer-

maturity options and the term structure is consistently downward sloping (in absolute
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value) across normal times and periods of stress.

These results extend the accumulating evidence for non-trivial term structures of risk
prices to the market for variance risk. A comparative advantage of our approach to the ex-
isting literature is a focus on the price per unit of risk as a driver of the term structure of risk
premia. The findings thus help motivate a new generation of option pricing models that al-
low for horizon-dependent risk prices. However, our findings are informative not only for
option pricing. Specifically, the results presented in this paper support preference-based
rationalizations of the term-structure of expected returns, such as the horizon-dependent
risk aversion model of Andries, Eisenbach, and Schmalz (2023).

The implicit assumption that risk prices are flat across horizons — which is rejected in
this paper — would lead market observers to attribute too much of the term structure of
risk premia to a term structure in expected volatility. In other words, our results empha-
size that the conversion between objective and risk-neutral measures depends on maturity.
This finding may help inspire future generations of asset pricing models and econometri-

cians’ interpretation of economic forecasts.
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