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Abstract 

We empirically investigate the term structure of variance risk pricing and how it varies over time. 
Estimating the price of variance risk in a stochastic-volatility option pricing model separately for options 
of different maturities, we find a price of variance risk that decreases in absolute value with maturity but 
remains significantly different from zero up to the nine-month horizon. We show that the term structure is 
consistently downward sloping both during normal times and in times of stress, when required 
compensation for variance risk increases and its term structure steepens further. 
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1 Introduction

The risks facing investors have a rich term structurewith some risks relevant at shorterma-
turities and other risks relevant at longer maturities. After mostly focusing on bonds, the
analysis of how risks at differentmaturities are priced hasmore recently shifted to equities,
providing newmoments for asset pricingmodels tomatch (Cochrane, 2017). In particular,
van Binsbergen, Brandt, andKoijen (2012) first document a downward-sloping term struc-
ture of equity risk premia, suggesting significantly higher risk premia for short horizons
than for long horizons and rejecting the predictions of the workhorse asset pricingmodels
of Campbell and Cochrane (1999) and Bansal and Yaron (2004). While similar patterns
have since been found in various asset classes,the evidence is still subject to debate.1 Using
equity dividend strips, Bansal et al. (2021) show evidence that the term structure of equity
risk premia is weakly upward sloping during normal times and inverts during recessions.
Giglio, Kelly, and Kozak (2023) confirm this using synthetic dividend strips going back to
the 1970s. Gormsen (2021) shows that the slope of the term structure is countercyclical to
the price-dividend ratio. These results highlight the importance of time-series variation in
the term structure of risk premia.

Because variance risk is an important driver of equity risk premia, how it is priced in
the term-structure is important to understand the results above. Using proprietary data
on variance swaps, Dew-Becker et al. (2017) find that investors are willing to pay for in-
surance against variance risk at the one-month maturity but not at longer maturities, sug-
gesting that the compensation for variance risk also has an important term structure com-
ponent. In this paper, we focus on the term structure of variance risk pricing and its varia-
tion over time. We study two questions. First, is volatility risk never priced at longer hori-
zons? Second, is there important temporal variation underlying the average term structure
of volatility risk pricing? To answer these questions, we use standard index options data
and the simple one-factor stochastic variance model of Christoffersen, Heston, and Jacobs
(2013) which yields a single parameter capturing the per-unit price of variance risk.2 Our
approach is, first, to discipline the physical parameters of the return process using the un-
derlying index returns and, then, to estimate the parameter governing the price of variance
risk separately for options in distinctmaturity buckets. This allows us to give clear answers

1See van Binsbergen and Koijen (2016) and Giglio, Kelly, and Kozak (2023) for overviews.
2Note that a positive price-of-variance-risk parameter implies that investors require compensation for ex-

posure to variance risk. The literature defines the variance risk premium as the difference between expected
variance under the physical and risk neutral measures. This is the payoff to being long variance and tends
to be negative, consistent with investors requiring compensation for bearing variance risk (Carr and Wu,
2009). To avoid confusion, we tend to think in terms of positive numbers throughout, i.e. the absolute value
of the price of variance risk.
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to our first-order questions whether long horizon variance risk is priced and whether the
relative pricing at different maturities (per unit of risk) varies systematically over time.

For our unconditional estimates, we find a significant price of variance risk for matu-
rities up to nine months (options with 125 to 190 trading days to expiry). This finding
is in contrast to Dew-Becker et al. (2017), who find a significant variance risk premium
only at the shortest, one-month horizon. Our finding is robust to estimating the physical
process of returns separately from options prices, and to allowing the expected process of
returns to vary by maturity. The differences between our results and those of Dew-Becker
et al. (2017) may be in part due to the more liquid nature of the market for index options
we use to estimate the price of variance risk relative to their results which are found in
the significantly less liquid market for variance swaps. In addition, we find that the term
structure of the price of variance risk (in absolute value) is downward sloping, with short-
maturity options exhibiting significantly higher risk premia than longer maturity options
across maturities of up to a year.

Finally, we examine time-series variation in the term structure of variance risk pricing.
We find a robust negative slope to the compensation for variance risk across periods with
high and low volatility, low and high GDP growth and and low and high price-dividend
ratios. These differing market conditions shift the level of the term structure of the com-
pensation for variance risk, but the slope remains downward sloping in our estimates.
That the slope of the term-structure of variance risk premia always remains downward
sloping in the time series starkly contrasts to similar analysis on the term-structure of the
equity risk premia in Gormsen (2021), Bansal et al. (2021), and Giglio, Kelly, and Kozak
(2023).

Our three main results, (i) that variance risk is priced beyond the short horizon, (ii)
that the term-structure of variance risk premia is downward sloping in absolute value,
and (iii) that it remains so under all market conditions, have important implications for
asset pricing models. Our first result, the strictly non-zero price of variance risk at short
and medium horizons, implies that not just the immediate volatility shocks but also the
shocks to expected volatility are priced; a fundamental difference to the results of Dew-
Becker et al. (2017). This is consistent with standard asset pricing models (e.g. Bansal and
Yaron (2004); Bansal et al. (2012, 2014)) where shocks to future volatility play a key role
inmatching asset pricing data such as the equity premium. On the other hand, our second
result, that the average term-structure of variance risk premia is downward sloping, chal-
lenges the standard models. While the long-run-risk model of Bansal and Yaron (2004)
as well as the rare-disaster model of Wachter (2013) correctly predict a negative price per
unit of variance risk, the models cannot quantitatively match its decline with maturity (in
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absolute value). Finally, models that capture the variation in the slope of equity risk pre-
mia via variation in risks, such as Gormsen (2021) and Bansal et al. (2021), may not be able
to match the downward sloping term-structures we obtain under all market conditions,
our third result. Capturing both the upward/downward variations in the term-structure
of equity premia and the constantly downward sloping term-structure of variance risk
premia that we document constitutes a challenge and invites new theories, e.g. Andries,
Eisenbach, and Schmalz (2023) who rationalize the evidence on equity risk premia via
variations in market liquidity.

Related literature. Most of the existing option pricing literature has steered clear of the
question whether the variance risk pricing varies across maturities. For example, work by
Coval and Shumway (2001) or Carr and Wu (2009) measures variance risk premia for
options with a single maturity; Christoffersen, Heston, and Jacobs (2013) pool all matu-
rities when estimating the price of variance risk. Our repeated estimation of the price of
variance risk on subsamples of the data differs from their approach. In contrast to Gruber,
Tebaldi, and Trojani (2021), and Bardgett, Gourier, and Leippold (2019), we offer non-
parametric or “model-free” results that are inconsistent with a constant price of variance
risk, but consistent with a horizon-depend price of risk, as derived in Andries, Eisenbach,
and Schmalz (2023).

Outside the standard options pricing literature, other papers have investigated the term
structure of variance risk premia, using different data sets and different methodologies
than the present paper. As noted above, Dew-Becker et al. (2017) use proprietary data
on variance swaps to estimate term-structure models, similar to Amengual (2008) and
Aït-Sahalia, Karaman, and Mancini (2020), but add realized volatility as a third factor
in addition to the first two principle components (level and slope). They find that only
shocks to realized volatility are priced, implying a term structure that is steeply negative
at the short end (a one-month horizon) but essentially flat at zero beyond that. Both the
data (index options as opposed to variance swaps) and methodology (estimation of an
options pricing model as opposed to price of variance swaps) we use are sharply different
and complementary to Dew-Becker et al. (2017).

One potential explanation for our finding of a non-constant price of variance risk is
a risk of jumps that have intensities or prices that vary by horizons. Some recent option
pricing models with jumps find a non-constant variance risk pricing in the term-structure
(Gruber, Tebaldi, and Trojani, 2021; Bardgett, Gourier, and Leippold, 2019). However, a
distinguishing feature of both papers is a change of slope between high and low volatility
regimes, inconsistent with the results we obtain from the data.
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Less closely related are Choi, Mueller, and Vedolin (2017), who find a negative and
upward-sloping term structure of variance premia in the Treasury futures market. Our
conditional results on the relationship between current market volatility and the term
structure of risk prices are related to Cheng (2018) who studies the returns of hedging
volatility with VIX futures. Barras and Malkhozov (2016) find that institutional factors
help explain differences in estimates of variance risk premia in the equity and option mar-
kets.

The paper proceeds as follows. Section 2 presents our data sources and parametric esti-
mation procedure. Section 3 gives the empirical results and Section 4 provides robustness
checks. Section 5 concludes.

2 Data and empirical results

2.1 Data sources and summary statistics

We use daily closing data of European SPX index options and SPX index levels from Jan-
uary 1996 to January 2018 from OptionMetrics. S&P 500 returns, excluding dividends,
from January 1990 to January 2018 come from CRSP. The risk-free rate for a given daily
return observation is defined as log(1 + rt)/252, where rt is the average effective federal
funds rate for the month.

We clean the data by removing duplicate observations of calls or puts on the same day
that have the same expiration date, strike price, and midprice. Next, we keep only options
that have amaturity between 20 and 252 trading days, inclusive, on the day of observation.
Using trading days to measure maturity is essential. The GARCH estimation treats the
index return series as a continuous series without weekends. To be consistent, the option
maturities should therefore also be expressed in trading days. We follow Bakshi, Cao, and
Chen (1997) in excluding shorter-maturity options to avoid microstructure noise close to
expiration, and we exclude longer-maturity options because they are thinly traded. We
also follow Bakshi, Cao, and Chen (1997) in excluding any options that have quoted bid
prices below $3/8 to avoid discretization issues or options that do not obey the futures
arbitrage constraints: for a call with maturity τ, C(τ) ≥ max{0, St − Xte−rtτ}, and for a
put, P(τ) ≥ max{0, Xte−rtτ − St}.

We restrict our attention to out of the money options to avoid well known issues with
the liquidity of in themoney options. On everyWednesday, for eachmaturitywe select the
out of themoney option from each of the 6most highly traded strikes: if the strike is greater
than the stock price we choose the call; if the strike is less than the stock price we choose
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Table 1: Summary statistics of options pricing data. The table shows summary statistics
sorted by moneyness and maturity of SPX index options prices in the full data sample used
for this paper from January 1996 to January 2018.

Summary Statistics by Maturity
Maturity ≤30 30-60 60-90 90-120 120-180 >180 All
Count 3,419 6,810 4,184 2,318 4,357 5,317 26,405
Implied volatility 21.41 21.46 22.14 21.64 21.51 21.42 21.58
Mid-price 11.61 18.62 25.98 30.14 36.79 47.41 28.68
Bid-ask spread 1.03 1.45 1.82 1.87 1.96 2.31 1.75

Summary Statistics by Moneyness
Moneyness ≤0.96 0.96-0.98 0.98-1.02 1.02-1.04 1.04-1.06 >1.06 All
Count 6,428 2,296 6,252 2,122 1,800 7,507 26,405
Implied volatility 18.82 18.00 18.87 20.36 22.05 27.53 21.58
Mid-price 26.48 39.26 40.03 30.56 26.83 17.80 28.68
Bid-ask spread 1.79 1.91 1.94 1.75 1.73 1.51 1.75

the put. We convert all put prices to call prices by put-call parity, ignoring dividends.
Table 1 presents summary statistics for the sample of 26,405 option-day observations

used in the parametric analysis. In this sample, the average implied volatility is increasing
with maturity. When sorted by moneyness, we also see evidence of both put skew and
the volatility smile; out of the money puts have much higher implied volatility than calls
and, in general, out of the money options have higher implied volatility than at the money
options. Liquidity improves at longer maturities, with the mean bid-ask spread at around
9% of the average mid-price for short maturities and declining to around 5% at longer
maturities.

2.2 Parametric procedure

We followChristoffersen, Heston, and Jacobs (2013, hereafter CHJ) andHeston andNandi
(2000) to describe the dynamics of stock return and variance. Specifically we assume that
the stock price St follows a GARCH-in-means process and the one-period excess return
has variance ht, as follows:

log St = log St−1 + rt +
(

µ − 1
2

)
ht +

√
ht zt

ht = ω + βht−1 + α
(

zt−1 − γ
√

ht−1

)2
,
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with zt ∼ N (0, 1), where µ governs the equity premium, ω governs the unconditional
mean of the shock process, β governs its persistence, α captures the kurtosis of the distri-
bution, i.e. how fat the tails of the variance process are, and γ makes the distribution asym-
metric and captures the correlation of the variance with the stock return. The stochastic
discount factor is given by

Mt

M0
=

(
St

S0

)ϕ

exp

(
δt + η

t

∑
s=1

hs + ξ (ht+1 − h1)

)
,

where δ and η capture time preferences, and ϕ captures aversion to equity risk. Our fo-
cus is on the parameter ξ which multiplies variance in the stochastic discount factor and
therefore captures aversion to variance risk “per unit of variance.” We therefore refer to ξ

as the price of variance risk (PVR) parameter.
Given the physical GARCH parameters Θ = {ω, β, α, µ, γ} and the PVR parameter ξ,

the equity risk aversion ϕ is pinned down as ϕ = −
(

µ − 1
2 + γ

)
(1 − 2αξ) + γ − 1

2 (see
Heston and Nandi (2000) and CHJ for additional details). CHJ show that the processes
can be risk-neutralized as

log St = log St−1 + rt −
1
2

h∗t +
√

h∗t z∗t ,

h∗t = ω∗ + βh∗t−1 + α∗
(

z∗t−1 − γ∗
√

h∗t−1

)2
,

with

h∗t =
1

1 − 2αξ
ht, ω∗ =

1
1 − 2αξ

ω,

α∗ =
1

1 − 2αξ
α, γ∗ = γ − ϕ,

and z∗t ∼ N (0, 1). To compensate for variance risk, the risk neutral variance process has
a higher long-run mean and higher persistence for ξ > 0. The PVR parameter ξ therefore
directly translates into the variance risk premium E[ht]− E[h∗t ], entering multiplicatively
and therefore capturing the per-unit pricing of variance risk.

CHJ estimate the GARCH parameters and a common PVR parameter ξ jointly with
a likelihood that incorporates both returns and option prices. We follow their approach,
except that we do not smooth the inputs by computing a volatility surface but, instead,
smooth the outputs from the estimation procedure. This ensures that we are basing our
estimates on actual observed prices and that we do not inflate our dataset with interpo-
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lated values. Other than that, we adapt their joint estimation procedure for the full sample
but, in contrast to them, allow ξ to vary by maturity category.

Define daily index returns Rt = log(St/St−1) and the risk-free rate rt. The return log
likelihood is only a function of the GARCH parameters Θ = {ω, β, α, µ, γ}

ℓret(Θ) = −1
2

T

∑
t=1

[
log ht +

1
ht

(
Rt − rt −

(
µ − 1

2

)
ht

)2
]

,

where
h1 =

ω + α

1 − β − αγ2 .

Define Black-Scholes vega weighted pricing errors as

εi =
Pmkt

i − Pmod
i

BSVmkt
i

,

where Pmkt
i is the market price of option i, BSVmkt

i is the market Black-Scholes vega of
option i, and Pmod

i is the model price for option i. Note that Pmod
i depends on both the

GARCH parameters Θ as well as the PVR parameter ξ for the maturity category to which
option i belongs. We use four maturity categories and assign different PVR parameters
ξ1, . . . , ξ4 for options with maturities of 20 to 60 days, 60 to 125 days, 125 to 190 days,
and 190 to 252 days, respectively. Define Ξ = {ξ1, . . . , ξ4}. Assume that the Black-Scholes
vega weighted pricing errors are i.i.d. normal with mean zero and variance σ2. The option
likelihood is then a function of Θ, Ξ, and σ2:

ℓopt

(
Θ, Ξ, σ2

)
= −1

2

N

∑
i=1

(
log σ2 +

ε2
i

σ2

)

Maximum likelihood can then be used to estimate both Θ and Ξ,{
Θ̂, Ξ̂, σ̂2

}
= argmax

{Θ,Ξ,σ2}

(
ℓret + ℓopt

)
.

2.3 Sample splits

Our interest is in whether estimated PVR parameters vary with the state of the economy
as well as with the horizon of the option. To explore this question, we calculate the likeli-
hoods for several splits of the data by VIX levels, price-dividend ratios and GDP growth,
and compare the estimated variance risk pricing across horizons and across splits. In par-
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Table 2: Summary statistics of options pricing data by subsamples. The table shows sum-
mary statistics of SPX index options prices in the sample used for this paper from January
1996 to January 2018 for sample splits by high and low VIX, low and high price-dividend
(PD) ratio, and low and high GDP growth; and, for implied volatility, by maturity.

Full sample VIX split PD ratio split GDP growth split
High Low Low High Low High

Implied volatility 21.58 25.23 15.41 23.34 20.50 24.30 19.46
Mid-price 28.68 31.53 22.72 30.04 27.17 31.23 25.95
Bid-ask spread 1.75 1.88 1.50 1.95 1.62 2.06 1.49
Implied volatility by maturity
≤30 21.41 25.43 14.45 22.97 20.62 24.59 19.31
30-60 21.46 25.56 14.76 23.48 20.44 24.64 19.33
60-90 22.14 26.12 15.46 24.13 20.41 24.50 19.49
90-120 21.64 25.69 15.68 23.59 20.60 24.36 19.69
120-180 21.51 24.70 16.01 23.35 20.46 24.19 19.57
>180 21.42 24.07 16.37 22.36 20.59 23.47 19.53

ticular,we obtain daily closingVIX index values from theCBOE Indexes data, GDPgrowth
data on a quarterly basis from the BEA, and monthly data on the S&P500 price-dividend
ratio from S&P500 Ratios via Nasdaq Data Link. For each of these variables, we split our
samples into “low” and “high” based onwhether the variable is below or above its median
value over our sample period. Table 2 reports summary statistics over these subsamples.
Times of high volatility, low PD ratios and low GDP growth are associated with greater
implied volatility and higher option prices. However, these times are also associated with
higher option implied volatility at short maturities than at long maturities. Our analysis
below is designed to determine how much of these differences are due to the underlying
index return process versus the price of variance risk.

3 Estimation results

3.1 Term structure of the price of variance risk

Figure 1 shows the term structure of the PVR parameter ξ estimated on the full sample.
The paramater is significantly positive (ξ > 1) at all maturities except the longest maturity
(190–252 days), indicating that investors require compensation for bearing variance risk
and considerably more so (per unit of variance) at shorter horizons. Table 3, column (1)
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Table 3: Estimation on full sample and subsamples. The table shows shows estimates of the
model using joint maximum-likelihood estimation for the full sample as well as for sample
splits by high and low VIX, low and high price-dividend (PD) ratio, and low and high GDP
growth. GARCH processes are held constant over both splits in columns (2)–(7). The top
panel shows the estimates for GARCH parameters, the middle panel shows estimates for the
variance risk preference parameter, ξ, and the bottom panel shows the likelihood from the
fit to returns, ΦR, the fit to options prices, ΦO, and the joint likelihood which is the sum of
the returns likelihood and the options prices likelihood.

(1) (2) (3) (4) (5) (6) (7)
Full sample VIX split PD ratio split GDP growth split

High Low Low High Low High
β 0.735 0.747 0.725 0.733

(0.004) (0.003) (0.004) (0.003)
α 1.3×10−6 1.1×10−6 1.3×10−6 1.3×10−6

(0.02×10−6) (0.02×10−6) (0.03×10−6) (0.03×10−6)
γ 451.24 463.62 459.38 445.72

(5.72) (4.35) (6.55) (6.14)
ξ20−60 1.212 1.896 1.065 1.377 1.166 1.321 1.169

(0.018) (0.020) (0.019) (0.026) (0.020) (0.026) (0.020)
ξ60−125 1.108 1.621 1.020 1.205 1.082 1.198 1.065

(0.013) (0.015) (0.014) (0.018) (0.015) (0.015) (0.014)
ξ125−190 1.025 1.414 1.000 1.116 1.007 1.105 1.000

(0.010) (0.011) (0.010) (0.014) (0.011) (0.013) (0.013)
ξ190−252 1.000 1.320 1.000 1.056 1.000 1.048 1.000

(0.009) (0.010) (0.009) (0.012) (0.009) (0.011) (0.007)
ΦR 29,678 29,740 29,683 29,690
ΦO 70,951 44,065 30,039 25,481 45,614 30,657 40,397
ΦR + ΦO 100,630 103,844 100,779 100,745
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Table 4: Sequential estimation and allowing theGARCHparameters to varywith horizon.
The table shows shows alternative specifications of the unconditional estimates of themodel.
Column (1) uses joint maximum-likelihood estimation for the full sample, column (2) uses
sequential estimation, first estimating the GARCHprocess using returns and then estimating
ξ using option prices, and columns (3)–(6) use joint estimation which allow both GARCH
parameters and ξ to vary bymaturity. The top panel shows the estimates for GARCH param-
eters, the middle panel shows estimates for the variance risk preference parameter, ξ, and
the bottom panel shows the likelihood from the fit to returns, ΦR, the fit to options prices,
ΦO, and the joint likelihoodwhich is the sum of the returns likelihood and the options prices
likelihood.

(1) (2) (3) (4) (5) (6)
Joint Sequential Joint, by maturity

β 0.735 0.819 0.714 0.705 0.775 0.787
(0.004) (0.013) (0.006) (0.007) (0.009) (0.006)

α 1.3×10−6 3.9×10−6 1.5×10−6 1.2×10−6 1.2×10−6 1.1×10−6

(0.02×10−6) (0.0×10−6) (0.03×10−6) (0.04×10−6) (0.05×10−6) (0.04×10−6)
γ 451.24 193.63 429.69 488.67 417.86 436.44

(5.72) (1.94) (5.14) (10.19) (4.42) (11.50)
ξ20−60 1.212 1.240 1.227

(0.018) (0.003) (0.015)
ξ60−125 1.108 1.217 1.141

(0.013) (0.002) (0.019)
ξ125−190 1.025 1.200 1.000

(0.010) (0.003) (0.020)
ξ190−252 1.000 1.211 1.000

(0.009) (0.005) (0.017)
ΦR 29,678 29,873 29,724 29,669 29,666 29,654
ΦO 70,951 61,794 25,229 19,304 13,404 12,524
ΦR + ΦO 100,630 91,667 54,952 48,973 43,070 42,178
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However, in case of the VIX split, the ordering of the term structures changes as now the
PVR parameter is higher in each of the subperiods than in the full sample period and
higher in the low-VIX sample than the high-VIX sample. This is due to the fact that the
GARCH parameters change considerably in the two subsamples. In the high VIX sample,
we estimate considerably larger kurtosis α and smaller correlation with returns γ (and
slightly lower persistence β). The reason that the GARCH process impacts the pricing of
variance risk is intuitive: Options prices may be higher at longer maturities either because
of a lower distaste for variance risk at longer horizons or because variance is expected to be
lower in the future. Again, this emphasizes the importance of joint estimation of returns
and options prices.

The finding that the PVR parameter is higher in each sub-period than in the full sam-
ple deserves some discussion and interpretation. We note that the estimated variance of
variance that results from estimating the returns process from either high- or low-variance
sub-periods is artificially low, compared to the true returns process, which has a chance to
move from a high- to a low-variance regime, reflecting relatively high variance of variance.
As a result, the estimated model would have trouble making sense of high option prices
in any sub-period, unless it assumes a high price of variance risk (in absolute value). The
joint estimation solves this problem by inferring different GARCH parameters for the two
periods based on the option prices as well as the returns process, which then leads to dif-
ferent VRP parameters that could be hard to compare. The fact that the model fit does not
greatly differ between the results in which GARCH is separated for the entire sample as
opposed to separately estimated in each subsample while the estimated price of variance
risk differs quite starkly suggests that the reason for the latter findings is more likely to
be a change in the pricing of variance risk rather than a change in the underlying returns
process.

5 Conclusion

We provide estimates of the term structure of variance risk pricing and how it varies over
time by estimating the price of variance risk in a Heston (1993) model, based on the em-
pirical approach developed by Christoffersen, Heston, and Jacobs (2013). We find that the
price of insurance against increases in volatility varies with the horizon of the risk insured:
short-term insurance is more expensive than long-term insurance, and this effect is more
pronounced in times of higher volatility. The price is significant across short- and longer-
maturity options and the term structure is consistently downward sloping (in absolute
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value) across normal times and periods of stress.
These results extend the accumulating evidence for non-trivial term structures of risk

prices to the market for variance risk. A comparative advantage of our approach to the ex-
isting literature is a focus on the price per unit of risk as a driver of the term structure of risk
premia. The findings thus helpmotivate a new generation of option pricingmodels that al-
low for horizon-dependent risk prices. However, our findings are informative not only for
option pricing. Specifically, the results presented in this paper support preference-based
rationalizations of the term-structure of expected returns, such as the horizon-dependent
risk aversion model of Andries, Eisenbach, and Schmalz (2023).

The implicit assumption that risk prices are flat across horizons —which is rejected in
this paper — would lead market observers to attribute too much of the term structure of
risk premia to a term structure in expected volatility. In other words, our results empha-
size that the conversion between objective and risk-neutralmeasures depends onmaturity.
This finding may help inspire future generations of asset pricing models and econometri-
cians’ interpretation of economic forecasts.
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