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Abstract
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1 Introduction

Over the past three decades, the number of climate-related policies adopted globally has
increased significantly (see Exhibit 1). The risk to economic activity from changes in policies
in response to climate risks, such as carbon taxes and green subsidies, is often referred
to as transition risk. Transition risk can adversely affect the real economy through the
banking sector. For example, a shock to borrowers’ transition risk can impair their ability
to repay, which can then lead to an amplified effect on banks’ current and expected future
profits, resulting in a systemic undercapitalization of banks. It is well known that such
undercapitalization of the financial system could hamper economic growth through a decrease
in credit supply.
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Exhibit 1: The number of climate-related policies across the world It covers climate-
related laws, as well as regulations promoting low carbon transitions. (Source: Climate Change
Laws of the World Data)

Despite the widespread adoption of climate policies and the importance of understanding
their effect on the banking sector, there has been little understanding of the potential impact
of climate change on the financial system due to several challenges, as noted by Bolton et al.
(2020). In fact, while the literature on systemic risk measurement (e.g., Brownlees and Engle,

2017; Acharya et al., 2016; Adrian and Brunnermeier, 2016; Allen et al., 2012) has produced



useful indices of systemic distress in the context of financial crises, no such measures exist
to analyze climate-related risks.

In this paper, we focus on a particular dimension of climate risk (transition risk) and seek
to answer the following question: are banks sufficiently capitalized to absorb losses during
stressful conditions due to heightened climate risk? To answer this question, we take a novel
approach to measuring the potential adverse effect of transition risk on banks’ capitalization.

Measuring the climate risk exposure of financial institutions faces several challenges.
First, analyses based on past climate events may not effectively capture the changes in the
perception of risk. For instance, market expectations may change without a direct experience
of climate change events, and asset prices today can reflect changes in future climate risk
even though the damages or impacts are decades away. Second, both the climate risk itself
and how firms, banks, and markets respond to the perceived risk change over time. Third,
the lack of reliable data sources for systematically assessing climate-related risks poses a
significant challenge. While voluntary climate-related disclosures exist, they often suffer
from incompleteness and inconsistencies in quality.*

We develop a methodology that addresses the aforementioned challenges. We address the
first challenge by constructing climate risk factors by forming portfolios designed to decline
in value as the transition risk rises and then measuring the banks’ stock return sensitivity,
called climate beta, to the climate risk factor. We address the second challenge by estimating
the climate beta dynamically, which allows us to avoid making strong assumptions such as
a static balance sheet and time-invariant responses of firms and investors to change in the
transition risk. Our methodology addresses the third challenge, as it uses only the market
data that are consistent in quality, comparable across firms, and less susceptible to noise and
bias inherent in voluntary disclosures. The importance of these elements was also envisioned
in Bolton et al. (2020) and Brainard (2021) among others.

We create a novel measure CRISK, defined as the expected capital shortfall of a financial

1See Brainard (2021), Financial Stability Board (2021), and European Systemic Risk Board (2020) among
others.



firm under a climate stress scenario. CRISK is a function of a given financial firm’s size,
leverage, and expected equity loss conditional on a climate stress event, which is calculated
using the estimated climate beta. We define a climate stress event as a shock to a given
climate risk factor, an equity portfolio designed to decline in value as climate risk rises. To
consider a sufficiently severe yet plausible stress scenario, we take the lowest one percentile
of the 6-month return distribution of a climate risk factor to calibrate the stress level.?:3
Additionally, we introduce marginal CRISK, which isolates the effect of climate stress from
concurrent undercapitalization by subtracting CRISK under zero climate stress from CRISK.

We apply our methodology to learn about the climate risk exposure (CRISK) of large
global banks. The estimated CRISK varies depending on the severity of the scenario and the
climate risk factors. We summarize our findings using the stranded asset factor by Litterman
(n.d.) as the climate risk factor, which serves as a proxy for market expectations on future
transition risk, as fossil fuel energy firms’ assets are likely to become “stranded” along most
transition paths.

We find that the climate beta varies over time, highlighting the importance of dynamic
estimation. The climate beta and CRISK substantially increased during 2020, across all
banks in our sample. In 2020, the aggregate CRISK of the top four US banks increased
by 425 billion US dollars (USD), which corresponds to approximately 47% relative to their
market capitalization. Our decomposition analysis reveals that 40% of the CRISK increase
in 2020 was due to an increase in climate betas, and 40% was due to a decrease in equity
values. The aggregate marginal CRISK of the top four US banks reached 260 billion USD
in 2020, indicating a significant potential impact of climate stress.

These results are consistent with the following mechanism. When fossil fuel energy prices
plummeted in 2020, which would happen under a sudden and disorderly transition, “brown”

borrowers’ loans became particularly riskier with a shorter distance to default, and the banks’

2Basel Committee on Banking Supervision (2018) describes as part of stress testing principles that a
stress testing framework should consider “scenarios that are sufficiently severe but plausible.”

3Future work of scientific and economic analyses could suggest other approaches to calibrate the stress
level.



stock returns became more sensitive to the transition risk, thereby affecting banks’ climate
risk exposure. Indeed, we find evidence supporting this mechanism from the validation
exercise.

We note that we are not identifying that transition risk caused the collapse in fossil fuel
energy prices in 2020; rather, we are merely exploiting an event in which the climate factor
declined severely. Indeed, it would be ideal to estimate CRISK based on a realized transition
stress event. However, as there has not yet been a realized large-scale transition risk event, it
is impossible to exploit an empirical distributional relationship between transition risk and
its effect on bank capitalization. We can only extrapolate from events that have a similar
effect on the climate factor, building upon climate beta, which measures the sensitivity of
bank stock returns on the climate factor. One may be concerned that the climate factor
is capturing the effect of the concurrent COVID outbreak rather than the transition risk.
To address this concern, we validate the climate factors in event study analyses, where we
find that they respond to transition events that materialized (but are not sufficiently severe
for stress testing). Moreover, we find that our results are robust after controlling for the
non-energy related COVID effect.

Our framework is versatile since it can be applied to financial institutions other than
banks and can be aggregated at the economy level. To gauge the system-wide measure of
climate risk, we compute the aggregate CRISK and the aggregate marginal CRISK of 105
financial firms, including banks, broker-dealers, and insurance companies, in the US. The
aggregate CRISK of the US reached almost 500 billion USD in 2020 but declined to under
150 billion USD at the end of 2021, suggesting that climate risk does not pose an immediate
threat to the US financial system as of the end of 2021. However, the aggregate marginal
CRISK reached over 500 billion USD in 2020 and remained as high as 400 billion USD at the
end of 2021, which indicates that the effect of climate stress could potentially be substantial
in the future if banks are not sufficiently capitalized.

Our framework can also admit a wide variety of scenarios. Given that there has been



no consensus in terms of what constitutes sufficiently severe yet plausible scenarios in the
context of climate risk, we conduct a sensitivity analysis. For example, moving from a stress
level corresponding to the 1% quantile to less severe scenarios such as 5% quantile, 10%
quantile, and median, the peak marginal CRISK of the top four US banks in 2020 falls from
260 billion USD to 140, 120, and 10 billion USD, respectively. The results discussed so far
are based on the stranded asset factor. We find similar but slightly higher marginal CRISK
under the scenario associated with a stylized version of a carbon tax; however, we find much
lower marginal CRISK under the scenario associated with a stylized version of a carbon tax
combined with a green subsidy.

We validate our analysis using granular data on large US banks’ loan portfolios, taken
from Federal Reserve Y-14 Q (Y-14) forms. From this data set, we construct a panel of loan
portfolio climate beta by taking the loan-size-weighted average climate beta of the borrowers’
sector stock returns. We find that the constructed loan portfolio climate betas are strongly
aligned with the climate betas based only on the market data of bank stock returns and their
conditional covariance with climate risk factors, corroborating the economic validity of our
measures.® Additionally, we find that banks’ climate betas are higher when lending more
to industries with high emissions (“brown” industries) and when the risk of loans made to
these industries is high relative to that of other industries.

Our results highlight the credit risk and market risk channels through which transition
risk affects banks’ capitalization. Our finding of a sharp rise in the probability of default of
firms in the brown industries (relative to all other industries) in 2020 when fossil fuel energy
prices collapsed, which could happen under a sudden and disorderly transition, suggests that
a shock to borrowers’ transition risk can adversely affect their ability to repay even within
a short horizon (credit risk channel). Borrowers’ credit risk can affect banks beyond the

maturity of loans because (1) banks’ lending relationships are typically persistent (e.g., Beck

4This finding can also serve as a basis to measure the climate risk exposure of non-listed banks, as long
as data on loan composition are available. This is in the spirit of Engle and Jung (2018), who applied this
approach to non-listed banks in Latin America in the SRISK framework.



et al., 2018; Liberti and Sturgess, 2018; Nakashima and Takahashi, 2018) and (2) banks tend
to “specialize” by concentrating their lending disproportionately in one industry (Blickle et
al., 2021), which implies that finding lending opportunities outside the specialized industry
would likely be costly. Even if those loans are small relative to the bank’s entire balance
sheet, their rise in credit risk, within maturity or even beyond, can have an amplified effect on
the banks’ current and expected future profits and therefore the bank’s equity valuation. As
a result, a bank’s stock return sensitivity to climate risk moves in tandem with its borrowers’
exposure to climate risk (market risk channel).

We conduct a battery of exercises to verify the robustness of our estimates of bank
climate betas. First, we find that our results are robust to including additional bank stock
return factors, including interest rates, housing, and COVID. Second, our results remain
similar when we use close alternative climate and market factors. Third, we confirm that
our results are robust to various details of the estimation procedure, such as correcting for
asynchronous trading, using an annual sample instead of a full sample, or using a common
dynamic conditional beta parameter across banks to reduce estimation error. Fourth, the
results from the validation exercise hold when we use the unlevered climate beta of borrowers
in computing the loan portfolio climate beta to account for the firm leverage effects, and the

results also remain robust outside of the COVID period.

Contribution to Literature This paper contributes to the literature studying the effect
of transition risk on banks. Studies have documented that banks respond to transition
risk through the credit risk channel by adjusting loan prices and quantities. Kacperczyk
and Peydro (2021) find that high-emission firms receive less bank credit from banks that
make commitments. Chava (2014) finds that banks charge higher interest rates to firms
with environmental issues. Ivanov et al. (2021) show that banks reduce their transition
risk exposure by shortening maturities and limiting access to permanent financing for high-

emission firms. Delis et al. (2019) document that banks charge higher rates to fossil fuel



firms, and Laeven and Popov (2022) show that banks shift lending to high-emission sectors
in countries with laxer policies. While these papers suggest that banks respond to transition
risk, it is not clear to what extent banks could manage their risk of undercapitalization in
face of a sudden transition. This paper thus contributes to this literature by estimating
systemic climate risk, despite the means banks currently employ to mitigate climate risk.
Moreover, we incorporate not only the credit risk channel but also the market risk channel.

The current research on measuring systemic climate risk only offers measures that are
backward-looking, static, and based on deterministic transition scenarios, unlike the more
developed literature on measuring the systemic risk of financial institutions in the context
of financial crises (e.g., Brownlees and Engle, 2017; Allen et al., 2012; Adrian and Brunner-
meier, 2016; Acharya et al., 2016). Reinders et al. (2023) use Merton’s contingent claims
model to assess the impact of a carbon tax shock on the value of corporate debt and residen-
tial mortgages in the Dutch banking sector. Battiston et al. (2017) provide a network-based
approach and Nguyen et al. (2023) employ a bottom-up approach to climate stress tests.
Many regulators also have conducted climate stress tests,” relying on the book values and
projections of realized losses of loans using confidential supervisory data. These tests typi-
cally assume that the impacts of climate risk on firms’ cash flows (and therefore the impacts
on the banking sector) only appear far in the future (e.g., in 30 years), without incorporating
the possibility that banks’ balance sheets and policies can change within such a long horizon.
In contrast, our approach incorporates market expectations, and thus yields measures that
are forward-looking, time-varying, can be estimated in real time, and requires only publicly
available data.

We modify the SRISK framework of Brownlees and Engle (2017) along three dimensions
to assess the impact of climate-related risks. First, while the SRISK uses the market return as

the only risk factor, we employ a variety of climate risk factors to design stress scenarios. We

®Based on a survey of 53 institutions from 36 jurisdictions conducted by the Financial Stability Board
and Network for Greening the Financial System (2022), 54 climate stress tests or scenario analyses were
completed or in progress, and 12 exercises were in the planning stage.



also validate the climate risk factors by showing that they negatively respond to events that
are associated with a movement toward a greener economy. Second, we introduce several new
market-based metrics of climate risk exposures of financial institutions. On top of CRISK,
we also introduce marginal CRISK, which isolates the effect of climate stress from market
stress. To test for a scenario where market stress and climate stress arrive at the same time,
we introduce a compound risk metric, S&ECRISK.® This measure is useful because, when
market risk and climate risk are correlated, the CRISK alone may underestimate the risk.
Third, we validate our analysis using Y-14 data, due to the lack of realized climate stress

episodes that would allow for a direct assessment of the predictive power of CRISK.

Outline of the Paper The remainder of the paper proceeds as follows: Section 2 describes
the data. Section 3 develops a methodology to estimate the potential adverse effect of
climate transition risk on bank capitalization, and introduces measures of banks’ transition
risk exposure. Section 4 validates the measures. Section 5 presents the application of our

measures and Section 6 shows robustness results. Section 7 concludes.

2 Data

We use various data sets for analyses. We use market data for estimating climate betas and
CRISKSs of large global banks in the US, the UK, Canada, Japan, and France for the sample
period from 2000 to 2021. We focus on large global banks, since they hold more than 80%
of syndicated loans made to the oil and gas industry.” We use carbon emissions data to
construct some of the climate factors and bank-level data on financial variables and loan

portfolio composition to validate our measures.

6Tt is a sum of three components: marginal SRISK, marginal CRISK, and the undercapitalization of the
bank under zero climate stress and zero market stress.
"This is based on the syndicated loan data from LPC DealScan and Bloomberg League Table.



Market Data Our market-based approach only requires publicly available data. In the
construction of climate factors, we use the daily return on financial stocks, S&P 500 index,
and other ETFs, including VanEck Vectors Coal ETF (KOL), Energy Sector SPDR ETF
(XLE), and iShares Clean Energy ETF (ICLN) downloaded from Datastream. To form

industry portfolios, we use a CRSP-Compustat merged data set.

Carbon Emissions Data Some climate risk factors are constructed based on past car-
bon emissions, calculated as the sum of Scope 1 and Scope 2 emissions, downloaded from
Bloomberg. The data set includes emissions reported by firms in disclosure as well as emis-
sions reported to the carbon disclosure project. Scope 1 emissions are direct emissions from
sources controlled by or owned by the company. Scope 2 emissions are indirect emissions
associated with the purchase of electricity, steam, heat, or cooling. We use emission levels,
rather than emission intensities, since emission levels are associated with a risk premium
(Bolton and Kacperczyk, 2021, 2022). We additionally use carbon emissions data by S&P

Global Trucost to test for robustness.

Financial Variables and Loan Portfolio Data of US Banks We use data from FR
Y-14Q (Y-14) and FR Y-9C (Y-9C) to validate climate beta measures by examining the
relationship between climate beta estimates and bank loan composition as well as bank
characteristics. Y-14 provides granular data on banks’ loan holdings, and Y-9C provides
consolidated financial statement data of bank holding companies. Data from both forms are
maintained by the Federal Reserve. Y-14 is the closest data to the credit registry in the
US. Unlike commercially available databases that cover only a subset of the loan market,
Y-14 covers more than 75% of all corporate lending in the US. We use its sub-database
“Schedule H.1,” which provides granular information on all commercial and industrial loans
over 1 million USD in size for all stress-tested banks in the US at a quarterly frequency.

In the sample period between 2012:QQ2 and 2021:QQ4, we observe over 5 million loans for



21 listed banks.® This data set is particularly useful because we can make use of data on
the borrowers’ industry, primarily classified by the North American Industry Classification
System (NAICS), and the probability of default. The probability of default variable is based
on each bank’s internal assessment and reported as part of the stress testing requirements

of the Dodd-Frank Act.?

Others To test the robustness of climate beta measures, we use an index measuring seated
diners downloaded from OpenTable and an index measuring air passengers downloaded from
the Transportation Security Administration (TSA) to proxy for the effect of COVID on the

leisure and hospitality sector.

3 Methodology

The market-based methodology to measure the transition risk exposure of financial insti-
tutions involves three steps. The first step is to build stress test scenarios by constructing
portfolios designed to respond to climate risk. The second step is to estimate the time-
varying climate betas of financial institutions using the Dynamic Conditional Beta (DCB)
model of Engle (2016). The third step is to compute CRISK, which is the expected capital

shortfall conditional on climate stress.

3.1 Climate Transition Risk Factors and Climate Stress Scenarios

Every stress test begins with designing scenarios. To build market-based climate stress
scenarios, we build upon studies on forming climate hedge portfolios (e.g., Engle et al.,
2020; Alekseev et al., 2022; De Nard et al., 2022; Litterman, n.d.). These studies construct
portfolios that are expected to rise in value as climate risk increases. We form climate risk

factors by taking a short position in such climate hedge portfolios or in the factors correlated

8The bank-quarter panel is unbalanced.
9This variable has also been used by Correa et al. (2022).
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with them. While our framework is flexible such that other existing measures can be used,
market-based return factors have distinctive benefits in that they are forward-looking and
time-varying. Compared to unsigned news-based measures that mainly capture attention
to climate news, our measures can differentiate between attention to a tightening transition
policy from attention to a loosening transition policy.

We consider four climate risk factors: a stranded asset factor, an emission factor, a brown
minus green factor, and a climate efficient factor mimicking portfolio factor. Each of these
factors can be associated with stylized versions of climate transition scenarios, and all of these
factors can be easily computed on a daily basis. We further show that all of them negatively
respond to climate transition events that are associated with movements towards a greener

economy, while they respond to different types of climate transition events (section 3.1).

Stranded Asset Factor

The first factor we consider is a stranded asset factor. McGlade and Ekins (2015) find that,
globally, a third of oil reserves, half of the gas reserves, and over 80% of current coal reserves
should remain unused from 2010 to 2050 to meet the target of limiting global warming to
2 degrees Celsius. This implies that fossil fuels would likely become “stranded assets” more
quickly as economies move into a less carbon environment. Indeed, van der Ploeg and Rezai
(2020) find that the assets in the fossil fuel industries are at risk of losing market value due
to transition risk triggered by changes in renewable technology and climate policies in light
of the Paris commitments. In this sense, the return on a stranded asset portfolio is a useful
proxy measure reflecting market expectations on future transition climate risk.

The stranded asset portfolio was developed by Litterman (n.d.) and the World Wildlife
Fund, whose investment committee he chairs, takes a short position in the stranded asset
portfolio to get a climate hedge.!® The stranded asset factor is composed of a 70% long

position in VanEck Vectors Coal ETF (KOL), a 30% long position in Energy Select Sector

10The stranded asset portfolio return acts as a proxy for the World Wildlife Fund stranded assets total
return swap.
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SPDR ETF (XLE), and a short position in SPDR S&P 500 ETF Trust (SPY). During the
period in which VanEck Vectors Coal ETF is not available, we use the average return on
the top 4 coal companies instead. We use the performance of firms, not the performance of
commodities, to reflect the firms’ responses to a commodity shock, such as hedging.

Based on the stranded asset factor, we build a scenario. We consider a scenario where
the stranded asset factor declines by 50% over a six-month period. This is a sufficiently
severe yet plausible scenario suitable for a market-based stress test because a 50% decline
in the stranded asset factor corresponds to the left tail (1% quantile) of the past realized
return distribution. We note that this scenario may not materialize in the short run. For
instance, a high carbon tax without alternative energy can lead to an increase in energy
prices. Indeed, not only energy prices but also fossil fuel stock prices rose in 2022 due to
a reduction in supply. While it is unlikely that policymakers would implement a disruptive
policy like a high carbon tax imminently due to a lack of alternative energy in place, it
is likely that regulatory interventions will eventually be implemented to shift into a less
carbon-intensive economy (e.g., to meet the Paris agreement goal). If such implementations
were never to arrive, there would be no transition risk at all to consider, by definition. In
fact, a rapidly growing number of climate-related policies have been adopted globally (as
presented in Exhibit 1). As such measures get tighter and broader, it is plausible that
producers and consumers alike will be incentivized to reduce fossil fuel energy use and shift
to lower carbon fuels or renewable energy sources through investment or consumption. When
a tighter and/or faster than expected measure gets implemented, the value of the stranded
asset portfolio may fall sharply over a short horizon in a sufficiently severe “1% of the time”
stress event.

For the rest of the factors, we use the same approach to build scenarios. We consider
scenarios in which each factor falls substantially, corresponding to a 1% quantile of the return

distribution, over six months.
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Emission Factor

While the stranded asset factor is intuitive, the portfolio weights are not optimized to best
reflect transition risks. Moreover, a carbon tax can have a broader effect than hurting
fossil fuel firms. To consider a stylized version of a carbon tax, we construct an emission
factor in the following steps. We first compute daily industry returns by calculating the
value-weighted stock returns of US firms in the CRSP-Compustat database.!' Industries are
classified by SIC-4 digit. Then, for each year and industry, we compute the average carbon
emissions (sum of Scope 1 and Scope 2 emissions).!? Lastly, we compute weighted average
industry returns where the weight is the carbon emissions. Because the emissions data from
Bloomberg are available only from 2010, we apply the same emission weights as 2010 for the

pre-2010 period.'3

Brown Minus Green Factor

Subsidizing the production and consumption of renewable energy (“green subsidy”) is an-
other regulatory measure that can lead to a rise in transition risk. To consider a stylized
scenario with mixtures of a carbon tax and green subsidy, we construct a brown minus green
(BMG) factor. We use the emission-based factor as the brown factor and the iShares Global

Clean Energy ETF (ICLN) return as the green factor.

Climate Efficient Factor Mimicking Portfolio Factor

To consider climate stress besides stranded assets, we construct a climate-efficient factor
mimicking portfolio (CEP) factor by taking a short position in the CEP formed by De Nard
et al. (2022). The CEP portfolio is a long-only portfolio of publicly available sustainable

funds selected based on two criteria, (1) minimum variance, and (2) maximum correlation

HWe focus on ordinary common shares (share codes 10 and 11) traded on the NYSE, AMEX, and
NASDAQ (exchange codes between 1 and 3).

12Here, we confine the sample to S&P 500 constituents following Ilhan et al. (2020) to address the time-
varying coverage of emissions data.

13The results are robust to using emissions data from S&P Trucost.
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with climate news after controlling for standard financial risks, the price of oil, and the

stranded assets portfolio.

Climate Factor Responses around Climate Change Events

To test whether the constructed climate risk factors capture climate transition risk, we
conduct an event study analysis. We take the list of transition climate risk events from
Barnett (2019), which goes until March 2019, and extend it to the end of 2021. This gives us
107 events, including electoral events, Intergovernmental Panel on Climate Change (IPCC)
meetings, climate-related policy events, and others. The list includes the sign of shock, where
a positive sign is associated with a movement toward a greener economy (“green” event),
such as the Paris agreement, and a negative sign is associated with a movement away from
a greener economy (“brown” event), such as the withdrawal from the Paris agreement. The
climate factor summary statistics (Table B.1), correlation table (Table B.2), and the full list
of events (Table C.1) are included in the appendix.

We use the following specification to test the climate risk factors’ responses to the tran-
sition events: )

CF,=a+ Z% shocki_, + M KT, + ¢,
n=0

where C'F’ denotes climate risk factor, either stranded asset, emission, BMG, or CEP factor.
shock; takes a value of 1 if there was a green event, a value of -1 if there was a brown event,
and a value of 0 if there was no event on the day t. We use the SPDR S&P 500 ETF for the
market return, M KT. The expected sign of v is negative because a rise in transition risk is
associated with a positive shock and a lower value of C'F'. The standard errors are Newey-
West adjusted for serial correlation. Figure 1 plots the cumulative v coefficient and it shows
that all proposed climate risk factors respond negatively to greener events, as expected.
The ~ coefficients are statistically significant for the emission and the BMG factors, and
marginally significant for the stranded asset factor. The CEP factor’s insignificant response

may be due to an asymmetric response to green events versus brown events. If the market

14



tends to respond more to brown events than to green events, the CEP factor is not likely
to respond significantly to transition events because the CEP factor is designed to capture
green news, after taking out the stranded asset factor.

To address a potential concern that geopolitical risk is a confounding factor, we include
the global common volatility, COVOL, of Engle and Campos-Martins (2023) as a control
variable. We find that the v coefficients remain close (Figure C.1). Furthermore, for robust-
ness, we take a two-step approach closer to the standard event study analysis. Specifically,
we construct non-overlapping data around the event dates and first obtain the abnormal
return on climate factor, ar, = CF, — C'F,, from a market model CF, = a+bWET M KT, +¢,
on a l-year rolling window basis. Then we regress cumulative abnormal return on shock:
car—i44+n = o + v shock, + ¢;. Based on this alternative specification, we find consistent

results (Appendix C)."

3.2 Climate Beta Estimation

Following the standard factor model approach, we model bank ¢’s stock return as:

e B%ktMKE + Bglimatecﬂ + Eit (1)

where r;; is the stock return of bank ¢, M KT denotes market return, and C'F' denotes climate
risk factor. We include the market factor in the model to control for confounding factors,
such as the COVID shock and aggregate demand shock, that influence both the bank stock
returns and the climate risk factor. The market beta and climate beta, in this regression,
measure the sensitivity of bank ¢’s return to overall market risk and to the climate risk factor,
respectively.

The expected sign of the climate beta is positive for banks that hold loans and /or financial

14With this approach, the number of observations drops even for 1-day abnormal returns, because (1) we
estimate the market model based on the rolling-window regression and (2) we include only one observation
per 5-day window after the shock, following the standard event study approach.
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assets that are exposed to transition risk because the banks’ loan portfolios would likely
deteriorate as transition risk rises (climate risk factor falls). The rise in credit risk, either
due to the borrower’s outright inability to repay or deterioration in the borrower’s ability to
repay, would negatively affect the banks’ current and expected future profits and therefore
the banks’ stock returns.

We use the DCB model to estimate the time-varying climate betas on a daily basis.
The GARCH-DCC model of Engle (2002, 2009, 2016) allows volatility and correlation to
vary over time. The details of estimation steps and the parameter estimates are reported
in Appendix D. For stock markets with a closing time different from that of the New York

market, we take asynchronous trading into consideration.®

3.3 CRISK, Marginal CRISK, and S&CRISK Estimation

Following the SRISK methodology in Acharya et al. (2011), Acharya et al. (2012), and
Brownlees and Engle (2017), we define CRISK as the expected capital shortfall conditional

on a systemic climate change event

CRISK; = Et[OSi,t+h|ngli,t+h <]

15Consider the following specification including the lags of the independent variables:
T = B{WZtktMKTt + Bé\;'[tktMKthl + BgiimateCFt + BzcljiimateCthl + e

Assuming that returns are serially independent, we estimate the following two specifications separately and
sum the coefficients.

rie = BIF M KT, + BSE™CCF, + ey
T = Ba  MKT, 1 + 526;?77“”60}72—1 + €it

The sum, B4R 4 BMFE s the estimate of market beta and the sum, g{jlimate 4 glilimate g the estimate of
climate beta.
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where C'S;; is the capital shortfall of bank ¢ on day ¢t. We define the capital shortfall as the

capital reserves the bank needs to hold minus the firm’s equity:

where W;; is the market value of equity and D; is the book value of debt, and k is the
prudential ratio of equity to assets. The sum of D;; and W;; can be considered as the value
of quasi assets. {RtCJFFLt +n < C} is associated with a climate stress scenario. Assuming that
banks’ liabilities are immune to the stress, F [Di,whngﬁ’t +n < O] = Dy, CRISK for each

financial institution can be expressed as the following.!®

where LRM ES is the long run marginal expected shortfall, the expected firm equity multi-

period arithmetic return conditional on a systemic climate change event:
LRMES,; = —E| i,t+h|Rgﬂ,t+h < (] (3)
Based on equations (1) (3), CRISK can be written as'":
CRISKy =k Dy — (1 — k) - Wy - exp (85" log(1 — 0)) (4)

CRISK is higher for banks that are larger, more leveraged, and with higher climate beta.
We set the prudential capital fraction k to 8% (5.5% for European banks to account for

accounting differences) and the climate stress level 6 to 50%, as discussed in subsection 3.1.

16This is not a strong assumption given that the liabilities of banks are largely deposits, which are
relatively immune to the stress.
17See Appendix E for the derivation.
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Marginal CRISK We propose a measure, marginal CRISK, to capture the effect of cli-
mate stress, in isolation from the realized undercapitalization as well as the effect of market
stress. The marginal CRISK, mCRISK, is defined as the difference between CRISK and
non-stressed CRISK, where the non-stressed CRISK is simply the capital shortfall of a bank

without any climate stress (f = 0). From equation (2),
mCRISK = (1 —k)-W - LRMES (5)

Put differently, CRISK is the sum of the bank’s undercapitalization and the bank’s marginal
CRISK.

Systemic Climate Risk We introduce two measures to understand a system-wide climate
risk. First, we use the CRISK measure across all firms to construct a system-wide measure
of climate risk. The total amount of systemic climate risk in the financial system is measured
as

N

CRISK, =Y (CRISKy)

i=1
where (x) denotes maz(z,0). We ignore the contribution of negative CRISK in computing
the aggregate CRISK because it is unlikely that the capital surplus can easily be transferred
from one institution to another, especially during the distress period. The aggregate CRISK
of an economy can be interpreted as the amount of capital injection needed for the financial
system in climate stress.

Second, we use the marginal CRISK measure across all firms to construct a system-wide

measure of exposure to climate risk, in isolation from the concurrent capitalization:

N
mCRISK, =  mCRISK;

=1

In order to construct a system-wide exposure measure, we do not truncate each institution’s

mCRISK at zero.
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S&CRISK We also offer a framework to compute a compound risk, S&CRISK, based
on a value of market stress, #M* and that of climate stress, §¢¥™mate 18 FEquation 4 can be

extended to compute compound S&CRISK:
S&CRISK; = k- Dy — (1 — k) - Wy, - exp (B57™* log(1 — g7imate) 4 ghi* 1og(1 — oMk"))

This measure is useful because when the market risk and climate risk are correlated, the

CRISK alone can underestimate the risk.

4 Validation

We validate the climate beta measure using granular data on loan holdings of large US
banks from Y-14. We link market-based climate beta estimates to banks’ loan portfolio
composition and bank characteristics. The sample includes 21 listed banks in Y-14 for the
sample period from 2012:Q2 to 2021:Q4. The bank-level variables’ summary statistics and
correlation tables are reported in Table B.4. We test two main hypotheses: (1) climate beta
reflects banks’ loan exposure to climate risk, and (2) banks with higher brown loan exposure

have higher climate beta, and climate beta is high when the risk of brown loans is high.

4.1 Climate Beta and Loan Portfolio Climate Beta

First, we test whether the market valuation of banks’ exposure to climate risk factors, proxied
by climate beta, reflects banks’ loan portfolio composition. To test this, we construct a panel
of loan portfolio climate beta by computing the weighted average climate beta for each bank

where the weight is the loan size and each loan is assigned the climate beta of the respective

18We note that this metric does not model the tail dependence. While it is certainly possible that a large
climate stress would be more damaging in a recession than in a period of strong growth, calibrating the tail
dependence requires an equilibrium model, given that there has been no such event realized in the past.
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industry:

Loan Portfolio Climate Beta = Z W Bf“m“te
jed

where the weight, w; is the proportion of C&I loans made to the respective industry j.
ﬁf“mate denotes the climate beta of industry j, and it is computed as the value-weighted
average climate beta of firms in each 3-digit NAICS industry.!® The industry climate betas
are computed based on all listed firms in the US. While they are based on the listed firms,
we incorporate all firms including non-listed firms in the Y-14 by applying the same industry
climate beta for non-listed firms in the respective industry. This is a benefit of focusing on
the industry level rather than the firm-level composition of banks’ loan portfolios.
Consistent with the hypothesis, Figure 2 shows that the market-based climate beta and
the loan portfolio climate beta are strongly aligned, after controlling for the time-fixed ef-

fect and the bank-fixed effect. We formally test this hypothesis with the following OLS

specification:

g“m“te = a+b- Loan Portfolio Climate Betay + BankControls; + i + v + 4 (6)

The dependent variable, 3%me is bank i’s time-averaged daily climate beta during

the quarter-end month. Bank control variables include: log assets, leverage, return on
assets (ROA), loans/assets, deposits/assets, book/market, loan loss reserves/loans, non-
interest income/net income, and market beta. Table 1 shows the result. Columns (2)—(4)
include bank control variables, and Columns (3) and (4) add bank fixed effects to control
for unobservable time-invariant bank characteristics. Column (4) adds year fixed effects to
control for any potential trends. Standard errors are clustered at the bank level. Consistent
with the hypothesis, we find that b is positive and significant across specifications.

This relationship remains strong when the loan portfolio climate beta is computed based

19For some banks and periods, the borrowers’ industries are classified primarily based on the SIC code
instead of NAICS code. For these cases, we compute the value-weighted average climate beta of firms in each
3-digit SIC industry. We drop observations (bank-quarter level) if industry classification by SIC or NAICS
is not available.
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on firms’ unlevered climate beta, to account for the leverage effect of the firms (Table 2).
Moreover, this result is not driven by observations during the COVID period. When we
confine the sample to the pre-COVID period, before 2020, the significance and the magnitude

of the coefficients remain similar (Table 3).

4.2 Climate Beta, Brown Loan Exposure, and Brown Loan Prob-

ability of Default

The previous analysis characterizes loans based on their industry climate beta. Another
way to characterize loans in the context of transition climate risk is by using the borrowers’
carbon emissions data. In this subsection, we test whether banks lending more to industries
with high carbon emissions have higher climate betas. We define a brown loan as a C&lI
loan made to a firm in the top 30 SIC 4-digit industries by the sum of Scope 1 and Scope
2 emissions.?’ The emissions of the top 30 industries cover about 88% of the total reported
emissions.

We further hypothesize that climate betas are higher during the time period when the
risk of brown loans is high. Figure 3 shows that during the first two quarters of 2020, the
size-weighted average probability of default increased for firms in brown industries as well as
non-brown industries; however, that for the firms in brown industries increased much more
sharply.

We test formally whether a higher exposure to brown loans and a higher risk of brown

loans are associated with a higher climate beta, using the following OLS specification:

Climate —q+ bBrownLoanShare

p - Brown Loan Share;

+ pBrownkoanPD - Byown PD Spread, + Bank Controlsy + 6; + v + i (7)

The dependent variable, 3% is bank i’s time-averaged daily climate beta during the

20We use the industry rankings by emissions from Ilhan et al. (2020), and extend it to 2020.
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quarter-end month ¢. Brown Loan Share; is defined as bank i’s brown loans scaled by
total loans, for quarter t. Brown PD Spread; is defined as the spread between the size-
weighted average probability of default of firms in the 30 brown industries and that of firms
in all other industries, and it captures the time-series variation in the risk of brown loans

' We use the same bank control variables as the previous

relative to non-brown loans.?
analysis. The sample period for this analysis is from 2014:Q4 to 2021:Q4, since the data on
the probability of default are mostly available from 2014:Q4. Standard errors are clustered
at the bank level.

Table 4 presents the results. Consistent with the hypothesis, the coefficient on the
Brown PD Spread, is positive and significant across specifications.?? In addition, the
coefficients on Brown Loan Share; are positive and significant. These results suggest that
both exposure and risk of brown loans explain variations in climate beta. In untabulated
results, we find that the results are robust to using the emission intensity rankings, where
emission intensity is emission divided by the market capitalization of the firm.

These results shed light on channels— the credit risk channel and the market risk channel-
through which transition risk affects banks’ capitalization. A shock to borrowers’ transition
risk can adversely affect their ability to repay even within a short horizon (credit risk chan-
nel), as evidenced by the sharp rise in the probability of default of the brown borrowers
(relative to all other industries) in 2020 when fossil fuel energy prices collapsed, which would
happen under a sudden and disorderly transition. Borrowers’ credit risk can affect banks
beyond the maturity of loans because (1) banks’ lending relationships are typically persis-
tent (e.g., Beck et al., 2018; Liberti and Sturgess, 2018; Nakashima and Takahashi, 2018)
and (2) banks tend to “specialize” by concentrating their lending disproportionately in one
industry (Blickle et al., 2021), which implies that finding lending opportunities outside the

specialized industry would likely be costly. Even if those loans are small relative to the

21The probability of default is weighted by the log asset of the obligor. The results are robust when they
are equally weighted.
22We omit the coefficient on Brown PD Spread; in specification (4) as we include year-fixed effects.
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bank’s entire balance sheet, their rise in credit risk, within maturity or even beyond, can
have an amplified effect on the bank’s current and expected future profits and therefore the
bank’s equity valuation. As a result, a bank’s stock return sensitivity to climate risk moves
in tandem with its borrowers’ exposure to climate risk (market risk channel), as evidenced
by the strong alignment of climate beta and loan portfolio climate beta.

The results also imply that the empirical model of equation (6) provides a potential
framework to estimate the climate beta of non-listed banks. While it is not possible to
estimate the market-based climate beta of non-listed banks, they can be approximated by

using balance-sheet information along with granular information on loan composition.

5 Applications

In this section, we apply the methodology to large global banks in the US, the UK, Canada,
Japan, and France for the sample period from 2000 to 2021. For the main application, we
focus on large global banks, since they hold more than 80% of syndicated loans made to the oil
and gas industry.?® In the systemic climate risk analysis, we analyze the metrics aggregated
across large financial firms, including banks, broker-dealers, and insurance companies.?* We
first show the results based on the stranded asset factor and then present the results based

on other factors in subsection 5.6.

5.1 Climate Beta

Figure 4 presents the 6-month moving average climate betas of the 10 largest US banks in
the scenario using the stranded asset factor. They show that climate betas vary over time,
suggesting that it is important to estimate the betas dynamically. Climate betas of banks

started from zero in early 2000, fell slightly below zero during the beginning of the global

23This is based on the syndicated loan data from LPC DealScan and Bloomberg League Table.
24The real-time measures for all major financial firms across the world are published on the V-Lab website
(https://vlab.stern.nyu.edu/climate) on a regular basis.
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financial crisis, and spiked in 2020. We find that this pattern was common for banks in other
countries as well (Appendix F). The climate betas during 2020 are statistically significant,
based on the full sample OLS regression results (Appendix IA.A) and the rolling-window-
based OLS regression results (Appendix IA.B). In the validation exercise in section 4, we
show that a high climate beta is associated with a bank asset portfolio’s high exposure to
industries with high climate betas or industries with high carbon emissions, as well as those
industries’ probability of default. While those results are based on US banks, it is likely
that the climate beta of other countries also increased in 2020 because the loans they made
to brown industries became riskier as the demand for fossil fuel energy fell following the
common COVID shock. On the other hand, the proximity of climate betas to zero could be
related to the non-linearity in the climate beta as a function of the return on the stranded
asset factor. That is, we expect that the values of bank stocks are relatively insensitive to
fluctuations in the stock prices of oil and gas firms as long as those firms are sufficiently far

from default.

5.2 CRISK

Figure 5 presents the estimated CRISKs of the top 10 largest US banks in the scenario using
the stranded asset factor. Since CRISK is the expected capital shortfall, a negative CRISK
indicates that the bank holds a capital surplus. The reason why the estimated CRISKs
are often negative until 2019 is likely related to the non-linear relationship between climate
beta and the stranded asset factor. A bank will not have a capital shortfall if its climate
beta is small and will therefore have a negative CRISK. In contrast, the CRISKs increased
substantially across countries in 2020 (Appendix G).

Since CRISK is a function of climate beta, as well as a function of the size and leverage of
a bank, the ranking of CRISKs can differ from that of climate beta estimates. For instance,
in December 2020, climate betas of the top 10 US banks declined to below 0.5; however,

CRISKs of some banks (e.g., the bank anonymized as “C”) were substantial, as high as 100
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billion USD. To put this magnitude into context, the SRISK of bank “C” was 110 billion USD
in December 2020. This suggests that the bank’s expected capital shortfall in the climate
stress scenario is close to the magnitude of the expected capital shortfall in a potential future
financial crisis.?

We see high CRISKs during the global financial crisis and the European financial crisis
because when banks were undercapitalized, they are vulnerable to both overall market risk

and climate risk. To isolate the effect of climate stress from the effect of market stress, we

analyze marginal CRISK in subsection 5.4.

5.3 CRISK Decomposition

To better understand what drives the substantial increase in CRISK in 2020, we decompose

CRISK into three components based on equation (2):

dCRISK =k -AD—(1 —k)(1 — LRMES) - AW + (1 —k)-W -ALRMES  (8)
—— N _

N WV TV
dDEBT dEQUITY dRISK

The first component, dDEBT = k-AD, is the contribution of the firm’s debt to CRISK.
CRISK increases as the firm takes on more debt. The second component, dEQUITY =
—(1—=k)(1—=LRMES)- AW, is the effect of the firm’s equity on CRISK.?0 CRISK increases
as the firm’s market capitalization deteriorates. The third component, dRISK = (1 — k) -
W - ALRMES, is the contribution of an increase in climate beta to CRISK.?”

Table 5 decomposes the change in CRISK of the top 10 US banks during the year 2020
into three components. For the top 4 banks, the equity deterioration and the risk (due to
climate beta) each contributed about 40% to the increase in CRISK during 2020. On average

across the banks, equity deterioration contributed 48% and the risk contributed 30% to the

2Brownlees and Engle (2017) show that precrisis SRISK predicts the capital injections carried out by
the Federal Reserve Banks during the crisis.

26Here, LRM ES represents the average value of LRM ES; and LRMES; ;1. In the LRM ES calculation,
we use the monthly average climate beta to reduce the volatility of climate beta.

2"Here, W represents the average value of W, and Wiiq.
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change in CRISK during 2020. We find similar results for the UK banks (Table H.1). For
banks in Canada, France, and Japan, where the increase in CRISK was relatively small, we
find that the debt deterioration was the primary component and the risk due to climate beta

contributed to about a third of the increase in CRISK during 2020 (Appendix H).

5.4 Marginal CRISK

Figure 6 plots the marginal CRISKs (mCRISK) of the top 10 US banks, in the scenario
using the stranded asset factor. It shows that the mCRISKs opened up before 2020, and
reached 45-90 billion USD for the top four US banks at the end of 2020. The top four
banks’ aggregate mCRISK is approximately 260 billion USD. These correspond to roughly
28% of their equity. This suggests that the effect of climate stress in 2020 would have been
economically substantial. In contrast, during the global financial crisis or the European
financial crisis, the mCRISKs were close to zero, differentiating the latest peak in CRISK
from the earlier two peaks in Figure 5. Interestingly, the mCRISKs remain high even after
fossil fuel energy prices rebound to their pre-2020 level in late 2021. In other countries, we
find that the mCRISKs of some banks increased during 2020, although they are much lower

than those of the US banks mainly because they are smaller than the US banks (Appendix I).

5.5 Systemic Climate Risk

We aggregate CRISK and aggregate marginal CRISK across large financial firms, including
banks, broker-dealers, and insurance companies. To focus on large financial firms, we analyze
all financial firms with a higher than 25th percentile market capitalization in each country
as of the end of 2019. This sample includes 105 firms in the US, 34 firms in the UK, 50 firms
in Japan, 24 firms in France, and 18 firms in Canada. The full list of tickers and company
names for each country is reported in Appendix J.

Figure 7 plots the aggregate CRISK, stacked by country. The aggregate CRISK of

the sample firms reached almost 2 trillion USD in November 2020. This amount can be
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interpreted as the total amount of capital injection needed in climate stress, after taking the
concurrent capitalization of financial institutions into account. Therefore, a high aggregate
CRISK can be due to a high aggregate marginal CRISK, a concurrent undercapitalization
of financial firms, or both.

Figure 8 reports the aggregate marginal CRISK by country. This measure takes out the
effect of concurrent capitalization, and therefore, we interpret this measure as a system-wide
exposure to climate risk. The aggregate marginal CRISK in the US was substantial in 2020,
reaching over 500 billion USD, while it was not as high in other countries. It is useful to
monitor both the aggregate CRISK and the aggregate marginal CRISK. For instance, the
low aggregate marginal CRISK of Japan suggests that its high aggregate CRISK in the
recent period was due to undercapitalization.

Figure 9 plots the US financial firms’ marginal CRISK aggregated by industry group.
The total aggregate CRISK of the US financial system was substantial during the global
financial crisis, the European financial crisis, and 2020-2021. However, at the end of 2021,
the total aggregate CRISK of the US was lower than 150 billion USD, which suggests that
climate risk does not seem to pose a substantial threat to the US financial system. During
times of stress, CRISK was concentrated in the banking sector. We compute the Herfindahl
index associated with the CRISK shares to measure the degree of systemic climate risk

concentration in the system. The CRISK share is defined as

CRISK; .

We construct the index for each month, and we find that the index mostly stayed above 0.1
from January 2009 to December 2021 when the aggregate CRISK was non-negligible. This
suggests that CRISK is concentrated among a relatively small number of financial firms.
Figure 10 plots the aggregate marginal CRISK across the financial industry group. The
peak of the marginal CRISK of banks was over 400 billion USD, while that of broker-dealers
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and insurance companies was about 80 billion USD each. Based on this measure, we find

that the climate risk exposure of all financial industry groups increased during 2019-2020.

5.6 More Scenarios

The results discussed so far have been based on the scenario that the stranded asset fac-
tor falls by 50% over 6 months. Our framework, however, can go considerably further by

employing a wide variety of scenarios.

Severity of Scenario Given that there has been no consensus in terms of what consti-
tutes sufficiently severe yet plausible scenarios in the context of climate risk, we conduct a
sensitivity analysis. Figure 11 plots the aggregate marginal CRISK of the top 4 US banks
with respect to the severity of the scenario. Moving from the stress level corresponding to
the 1% quantile to less severe levels corresponding to a 5% quantile and a 10% quantile,
the peak marginal CRISK of the top four US banks in 2020 falls from 260 billion USD to
140 and 120 billion USD, respectively. If we do not use a tail scenario, where a stress level
corresponds to the median of the stranded asset factor, the peak marginal CRISK of the top
four US banks in 2020 is only about 10 billion USD.

Various Transition Scenarios The same set of measures can be computed based on other
factors constructed in subsection 3.1, motivated by various stylized versions of transition
scenarios. We highlight the key findings here and report the full results in Appendix K.
Based on the emission factor, which can be associated with a carbon tax, we find that the
marginal CRISKs are slightly higher than using the baseline stranded asset portfolio return.
The aggregate marginal CRISK of the top four US banks was about 270 billion USD at the
end of 2020. This is likely because the emission-based factor incorporates non-coal firms
with high emissions. Based on the BMG factor, which is motivated by a mixture of a carbon
tax and a green subsidy, the marginal CRISKs are lower; the top four US banks’ marginal

CRISKs ranged between 10 and 30 billion USD in 2020, suggesting that a green subsidy can
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partially offset the potential negative effect of a carbon tax on bank stock returns. The CEP
factor is designed to assess the effect of climate stress besides the stranded asset factor. The
marginal CRISKs based on the CEP factor are lower by 30 billion USD, which suggests that
the effect of climate stress besides the stranded asset factor is relatively low. The climate

beta and marginal CRISK plots for the three scenarios are reported in Appendix K.

Compound Risk Scenarios We also apply the compound risk framework. We consider a
scenario where the market stress and the climate stress are severe at the same time. Specifi-
cally, we calibrate the market stress level (%) to 40% and the climate stress level (§¢1mate)
to 50%. Each level corresponds to the 1% quantile of the 6-month return distribution of the
market factor and that of the climate factor, respectively. This is the scenario that was
realized during the global financial crisis and, therefore, can be considered a sufficiently se-
vere yet plausible scenario. Figure 12 and Figure 13 show the S&CRISK and the marginal
S&CRISK of the top ten US banks. The aggregate marginal S&CRISK of the top four US

banks reached approximately 590 billion USD at the end of 2021.

6 Robustness Tests

We conduct several tests to ensure that our results are robust to including additional bank
stock return factors, using close alternative climate factors, and taking alternative estimation
procedures.

One may be concerned about missing important factors that explain bank stock returns.
Since banks manage a portfolio of interest-rate-related products, we test whether our results
are robust to including interest-rate factors. Following Gandhi and Lustig (2015), we consider
a long-term government bond factor (LTG) and a credit factor (CRD). We use excess return
on the long-term US government bond index for the long-term interest rate factor and
excess return on the investment-grade corporate bond index for the credit factor. To test

how these factors affect the climate beta estimates, we first regress each bank stock return
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riy on LTG, and CRDy, and then regress the residual on M KT, and C'F;. In Figure L.7,
we plot the coefficient on C'F}, and it shows that the climate beta estimates based on the
baseline specification (1) are robust to including the interest-rate factors. We find that the
results are also robust to including the housing factor measured by the return on a bond fund
specializing in government mortgage-backed securities (Appendix L and Appendix IA.C).

One may be concerned about the COVID related factor being a confounding factor.
For instance, the restaurant, travel, and entertainment industries were hit hard during the
COVID pandemic, but they may not be the industries most affected by climate change. To
address this concern, we construct the COVID industry factor by taking the value-weighted
return on stocks that belong to the NAICS 3-digit industries most affected by COVID,
selected by Fahlenbrach et al. (2021). We exclude five industries that are in the top 20 by
emissions in 2020 because carbon-intensive sectors are likely to be most affected by climate
change.?® We first regress bank stock return on a COVID industry factor. Then, we regress
the residual from the first step on M KT and C'F and plot the coefficient on C'F' using a
1-year rolling window regression. We find that our results remain similar after including
the COVID industry factor (Figure L.10). For a limited sample period, we use an index
measuring seated diners from OpenTable, and an index measuring air passengers from the
TSA as non-transition-related COVID proxy variables and we find that our results are robust
(Appendix IA.C).

We do not include the HML factor of Fama and French (1993), because it is not clear
that the HML is exogenous in the context of our model. Pastor et al. (2022) find that value
stocks tend to be brown and growth stocks green and their two-factor model with a market
factor and a green factor explains much of the recent underperformance of value stocks. In
addition, we find that the HML factor is significant only in the post-GFC period, and this is
likely due to changes in the regulatory framework following the GFC. This also suggests that

the correlation between bank stock returns and the HML factor is potentially an endogenous

28The excluded SIC industry codes are 211, 486, 483, 481, and 324.
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outcome of the GFC. Instead, we include banks’ book-to-market ratio as an independent
variable to explain variation in climate beta. Table 4 displays the results of the analysis.
We find that the book-to-market ratio is significant in explaining climate beta in columns
(1)—(3); however, it becomes insignificant when we control for year fixed effects in column
(4).

We test for robustness to using close alternative climate risk factors. One could be worried
that normalizing the stranded asset portfolio by market return could confound our results.
However, we find that using a non-hedged stranded asset portfolio, 0.3XLE + 0.7TKOL,
instead of 0.3XLE +0.7TKOL — SPY leads to consistent results. Moreover, using the MSCI
All Country World Index (ACWI) instead of SPY yields similar results, since they are highly
correlated.?”

We corroborate that the results are not driven by a certain detail of our estimation
procedure. First, we find that the procedure to adjust for the time zone difference makes
a small difference. When the asynchronous trading is not corrected, the betas are slightly
smaller in absolute value. Second, we tested whether our results are sensitive to a choice
of the sample window. When betas are dynamically estimated based on an annual sample
(by calendar year) instead of the full sample, the results remain consistent. Based on the
annual sample, some extreme returns are picked up by time variation in the intercept; for
instance, betas are slightly less negative during the early global financial crisis. Third, one
might be worried that the dynamic parameters that govern the speed of adjustment of the
correlations through the dynamic conditional correlation estimation may be too noisy and
introduce errors for some banks. To test this, we took a two-step approach, where each
bank’s DCB parameter is estimated in the first step and the median DCB parameter is used
to estimate the betas in the second step. We find that this makes almost no difference. We
further confirm that our DCB estimation results are consistent with the rolling-window OLS

estimation results.

29Using a common market factor across countries, for instance, ACWI, facilitates cross-country compar-
isons; however, a country-specific market factor may not be fully incorporated.
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7 Conclusion

We develop a market-based methodology to assess the resilience of financial institutions
to climate-related risks. The procedure involves three steps. The first step is to measure
the climate risk factor. The second step is to estimate the time-varying climate betas of
financial institutions. The third step is to compute the CRISKs, the capital shortfall of
financial institutions in a climate stress scenario.

We empirically validate the climate risk factors in event study analyses, by documenting
that they negatively respond to transition events associated with movement toward a less
carbon-intensive economy. We validate the climate beta measure by comparing it with
banks’ loan portfolio composition, using Y-14 data. We find that climate beta reflects the
loan portfolio holdings of banks, and a higher climate beta is associated with higher loan
exposure to brown industries and higher risk of brown loans, corroborating the economic
validity of our measure.

We use the methodology to study the climate risks of large global banks in the US, UK,
Canada, Japan, and France. Based on a sufficiently severe yet plausible scenario in which
stranded assets sharply fall in value over a short horizon, we document a substantial rise in
climate betas and CRISKs across banks during 2020. Combined with the results from the
validation exercise, our findings are consistent with the following mechanism. When fossil
fuel energy prices collapsed to zero, which would happen under a sudden and disorderly
transition, “brown” borrowers’ loans became riskier relative to other loans, and banks’ stock
returns became more sensitive to the transition risk, thereby affecting banks’ climate risk
exposure.

There are multiple directions for future research. Our analysis is based on the climate risk
factors that are closer in spirit to transition climate risk. While physical risk may already
be embedded in the climate risk factors we measure in this paper, it might be interesting to
isolate the contribution of physical risk from that of transition risk by constructing a common

physical risk factor directly tied to the damages following extreme weather events. However,
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this is beyond the scope of this paper, as it would involve identifying market expectations
on a systemic component of physical risk. Another interesting question concerns modeling

the interaction between market stress and climate stress, and we leave it for future research.
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Figure 1: Climate Factor Responses to Climate Change Events Each panel plots the
cumulative coefficient v on shock; in CF; = a + Eizo Yn 8hocki_n, + M KT; + ; for each climate
factor CF'. shock; takes a value of 1 if there was a green event, a value of -1 if there was a brown
event, and a value of 0 if there was no transition-related climate event on the day ¢. Each climate
factor series is standardized by its volatility. The standard errors are Newey-West adjusted and
the band shows 95% confidence interval.

38



.15

1

Bank Climate Beta
.1
1

05 1 15
Loan Portfolio Climate Beta

N

Figure 2: Binned Scatter Plot of Bank Climate Beta and Loan Portfolio Climate Beta
after controlling for the time fixed effects and the bank fixed effects, based on quarterly data from
2012:QQ2 to 2021:Q4 for listed US banks in Y-14. The loan portfolio climate beta of bank 7 at time
t is defined as: Loan Portfolio Climate Beta;; = Zje 7 Wit ﬁ“m“te where w; denotes the fraction
of bank 7’s loan made to industry j at time ¢. The industry j is at the 3-digit NAICS code level.
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Figure 3: Average Probability of Default: Brown Firms vs. Non-brown Firms The
log-asset-weighted average probability of default of firms in brown industries and that of firms in
non-brown industries, based Y-14 from 2014:Q4 to 2021:Q4.
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Figure 4: Climate Beta of US Banks The sample banks are the top 10 large US banks by the
average total assets in 2019. The sample period is from June 2000 to December 2021.
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Figure 5: CRISK of US Banks The sample banks are the top 10 large US banks by the average
total assets in 2019. The sample period is from June 2000 to December 2021.
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Figure 6: Marginal CRISK of US Banks The sample banks are the top 10 large US banks by
the average total assets in 2019. Marginal CRISK is difference between the stressed CRISK and
non-stressed CRISK. The stressed CRISK is computed as: k-D—(1—k)-exp (31 log(1 — 0))-W
and the non-stressed CRISK is computed as: k- D — (1 — k) - W where k is prudential capital ratio,
D is debt, and W is market equity of each bank. The marginal CRISK values are truncated at
zero. The sample period is from June 2000 to December 2021.
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Figure 7: Aggregate CRISK, Stacked by Country The figure plots the (positive) CRISK
aggregated by country. The sample period is from June 2000 to December 2021.
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Figure 8: Aggregate marginal CRISK across Country The figure plots the marginal CRISK

aggregated by country. The sample period is from June 2000 to December 2021.
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Figure 9: US Aggregate CRISK, Stacked by Financial Industry The figure plots the
(positive) CRISK aggregated by country. The sample period is from June 2000 to December 2021.
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Figure 10: US Aggregate Marginal CRISK across Financial Industry The figure plots
the marginal CRISK aggregated by financial industry group. The sample period is from June 2000
to December 2021.
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Aggregate Marginal CRISK of Top 4 US Banks
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Figure 11: Sensitivity Analysis The figure plots the aggregate marginal CRISK of the top 4
US banks across different severity of the scenario. The stranded asset factor is used. The scenario
with 1% quantile is the most severe and the scenario with 50% quantile (median) is the least severe.
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Figure 12: S&CRISK of US Banks The sample banks are the top 10 large US banks by the
average total assets in 2019. The sample period is from June 2000 to Dec 2021.
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Figure 13: Marginal S&CRISK of US Banks The sample banks are the top 10 large US banks
by the average total assets in 2019. The sample period is from June 2000 to Dec 2021.
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Tables

) @ ) @
Climate Beta Climate Beta Climate Beta Climate Beta
Loan Portfolio Climate Beta 1.743%* 1.630*** 1.289*** 0.833***
(8.94) (9.27) (6.20) (3.28)
Log Assets 0.0141 0.400*** 0.0927
(0.97) (5.64) (1.29)
Leverage 1.746 0.0513 -0.925
(1.54) (0.03) (-0.78)
ROA 7.997* 5.527*** 2.236™*
(5.36) (4.61) (2.47)
Loans/Assets -0.0207 -0.192 -0.305
(-0.21) (-0.50) (-1.06)
Deposits/Assets 0.363*** 0.395 -0.185
(3.72) (1.20) (-0.54)
Loan Loss Reserves/Loans -3.605* 3.597 2.526
(-1.74) (3.47) (1.48)
Non-interest Income/Net Income 0.00186 0.00199 0.00225
(1.20) (1.42) (1.63)
Market Beta 0.172%** 0.127*** 0.0250
(5.16) (6.41) (1.32)
Book/Market 0.137*** 0.0982*** 0.00158
(3.35) (3.24) (0.04)
N 696 696 696 696
Bank Controls N Y Y Y
Bank FE N N Y Y
Year FE N N N Y
Adj R2 0.372 0.453 0.581 0.685

t statistics in parentheses
* p<0.10, ** p < 0.05, *** p < 0.01

Table 1: Bank Climate Beta and Loan Portfolio Climate Beta Quarterly data from 2012:Q2
to 2021:Q4 for listed US banks in Y-14. Standard errors are clustered by banks.
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(1) (2) (3) (4)

Climate Beta Climate Beta Climate Beta Climate Beta

Loan Portfolio Climate Beta (Unlevered) 2.957 2.491"* 2.189™ 1.231*
(4.68) (4.74) (4.71) (2.70)
Log Assets 0.0164 0.464 0.0755
(0.90) (5.29) (0.95)
Leverage 3.147 0.534 -1.080
(2.85) (0.33) (-0.94)
ROA 8.588™** 5.110™* 1.881*
(5.39) (3.66) (2.07)
Loans/Assets -0.0530 -0.557 -0.461
(-0.50) (-1.34) (-1.58)
Deposits/Assets 0.474* 0.901** -0.118
(2.96) (2.27) (-0.34)
Loan Loss Reserves/Loans -0.419 5.666" 2.989
(-0.17) (4.60) (1.70)
Non-interest Income/Net Income 0.00253 0.00211 0.00237
(1.39) (1.44) (1.72)
Market Beta 0.184*** 0.113* 0.0168
(4.94) (5.74) (0.87)
Book/Market 0.168™* 0.125% -0.00827
(3.18) (3.47) (-0.23)
N 696 696 696 696
Bank Controls N Y Y Y
Bank FE N N Y Y
Year FE N N N Y
Adj R2 0.191 0.326 0.550 0.678

t statistics in parentheses
* p <0.10, ** p < 0.05, *** p < 0.01

Table 2: Bank Climate Beta and Loan Portfolio Climate Beta (Unlevered) Quarterly
data from 2012:Q2 to 2021:Q4 for listed US banks in Y-14. Standard errors are clustered by banks.
All variables are defined in Table A.1.
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(1) (2) (3) (4)

Climate Beta Climate Beta Climate Beta Climate Beta

Loan Portfolio Climate Beta 0.267 0.257 0.755% 0.733"**
(1.35) (1.68) (3.25) (2.92)
Log Assets 0.0124™ 0.308™* 0.143*
(2.27) (4.03) (2.34)
Leverage 0.291 -0.600 -0.694
(0.46) (-0.33) (-0.57)
ROA 2.872 2.702* -0.553
(2.56) (2.04) (-0.72)
Loans/Assets 0.0813* 0.613 0.0709
(1.88) (1.42) (0.21)
Deposits/Assets 0.0987** -0.176 -0.166
(3.11) (-0.45) (-0.50)
Loan Loss Reserves/Loans -5.764** 0.652 2.512
(-3.51) (0.30) (1.07)
Non-interest Income/Net Income -0.000379 -0.00111 -0.0000352
(-0.34) (-0.85) (-0.04)
Market Beta 0.212"** 0.216* 0.0961**
(5.58) (4.41) (2.77)
Book/Market 0.0921** 0.0564 -0.0843"
(4.37) (1.43) (-1.86)
N 557 557 557 957
Bank Controls N Y Y Y
Bank FE N N Y Y
Year FE N N N Y
Adj R2 0.00564 0.114 0.145 0.400

t statistics in parentheses
* p <0.10, ** p < 0.05, *** p < 0.01

Table 3: Bank Climate Beta and Loan Portfolio Climate Beta (Pre-COVID) Quarterly
data from 2012:Q2 to 2019:Q4 for listed US banks in Y-14. Standard errors are clustered by banks.
All variables are defined in Table A.1.
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(1) (2) (3) (4)

Climate Beta Climate Beta Climate Beta Climate Beta

Brown Loan Share 2.140% 1.466** 1.187* 0.691*
(4.57) (3.02) (1.91) (2.51)
Brown PD Spread 8.265"** 6.621** 4.262%**
(10.52) (8.15) (6.14)
Log Assets -0.0110 0.398** 0.00845
(-0.89) (2.95) (0.10)
Leverage 3.7927* -1.155 -3.242*
(5.53) (-0.83) (-2.36)
ROA 9.462*** 5.426** 5.355**
(4.27) (3.30) (4.04)
Loans/Assets -0.189** -1.437 -0.563
(-2.28) (-4.10) (-1.59)
Deposits/Assets 0.475* 1.185% 0.278
(3.25) (2.07) (0.77)
Book/Market 0.288*** 0.265*** 0.00286
(5.77) (7.78) (0.06)
Loan Loss Reserves/Loans 6.989*** 7.158*** 2.386
(4.01) (3.00) (1.42)
Non-interest Income/Net Income 0.00218 0.00254 0.00345
(1.06) (1.38) (1.64)
Market Beta -0.0359 -0.0335 -0.0606**
(-1.06) (-1.42) (-2.80)
N 521 521 521 521
Bank Controls N Y Y Y
Bank FE N N Y Y
Year FE N N N Y
Adj R2 0.224 0.417 0.555 0.702

t statistics in parentheses
* p <0.10, ** p < 0.05, *** p < 0.01

Table 4: Climate Beta, Brown Loan Share, and Brown-Nonbrown PD Spread The
dependent variable, Bg limate i hank i’s time-averaged daily climate beta during quarter-end month.
Brown Loan Sharey is bank i’s loan exposure to the top 30 industries with highest emissions in
quarter t. Brown PD Spread is the spread between the size-weighted average probability of default
of firms in the top 30 brown industries and that of firms not in the 30 brown industries. Bank
control variables include log assets, leverage, ROA, loans/assets, deposits/assets, book/market, loan
loss reserves/loans, non-interest income/net income, market beta. Standard errors are clustered at
bank level. The sample period is from 2014:Q4 to 2021:Q4, as the probability of default data are
mostly available from 2014:Q4. All variables are defined in Table A.1.

52



Ticker CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK

F:US —144.06 —7.85 136.21 37.63 35.4 63.17
J:US —42.83 71 113.84 —0.84 69.26 45.42
A:US —50.2 45.23 95.43 24.63 35.03 35.77
C:US 13.26 93.32 80.07 17.49 29.92 32.65
I.US —41.02 —4.43 36.59 4.13 16.04 16.43
H:US —25.94 —7.78 18.15 3.8 4.83 9.52
B:US —6.8 7.69 14.49 4.11 5.85 4.53
D:US —9.98 1.69 11.67 3.25 0.21 8.21
E:US 11.38 22.54 11.16 9.9 —6.63 7.9

G:US 4.38 —6.1 —10.48 3.65 —27.75 13.62
Top 4 425.55 78.91 169.62 177.01

Table 5: CRISK Decomposition (US Banks) CRISK(t) is the bank’s CRISK at the end of
2020, and CRISK(t — 1) is CRISK at the end of year 2019. dCRISK= CRISK(¢)-CRISK(t — 1)
is the change in CRISK during 2020. dDEBT is the contribution of the firm’s debt to CRISK.
dEQUITY is the contribution of the firm’s equity position on CRISK. dRISK is the contribution
of increase in volatility or correlation to CRISK. All amounts are in billions USD. Top 4 banks
include F:US, J:US, A:US, and C:US.
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Appendix

A Variable Definitions

Variable Definition

Log Assets Log of total assets

Leverage Liabilities/Assets

ROA Return on assets; Net Income/Assets

Loans/Assets Loans (gross)/Assets

Deposits/Assets Deposits/Assets

BTM Book to market; Book Value of Equity/ Market Capitalization

Loan Loss Reserves/Loans
Non-interest Income/Net Income
Market Beta

Climate Beta

Loan Portfolio Climate Beta

Loan Portfolio Climate Beta
(Unlevered)

Brown Loan Share

Brown PD Spread

Loan Loss Reserves/Loans (gross)

Non-interest Income/Net Income

Average market beta over the quarter-end months

(March, June, September, December)

Average climate beta over the quarter-end months

(March, June, September, December); Climate beta is the bank’s
stock return sensitivity to the stranded asset factor.
Loan-size-weighted industry climate beta; Climate beta for each
3-digit NAICS industry is the value-weighted average climate beta
of firms in the industry. The climate beta of each firm is the firm’s
stock return sensitivity to the stranded asset factor.
Loan-size-weighted unlevered industry climate beta; Climate beta
for each 3-digit NAICS industry is the value-weighted average
unlevered climate beta of firms in the industry. The climate beta of
each firm is the firm’s stock return sensitivity to the stranded asset factor.
Share of loans made to the borrowers in the top 30 SIC 4-digit
industries by the sum of scope 1 and scope 2 carbon emissions.

The spread between the size-weighted average probability of
default of firms in the brown industries and that of firms not in

the brown industries. The brown industries are defined as the top
30 SIC 4-digit industries by sum of scope 1 and scope 2 carbon
emissions. The probability of default measures are based on

each bank’s internal assessment and reported to Y-14 as part of the
Dodd-Frank Act stress testing requirements.

Table A.1: Variable Definitions
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B Summary Statistics

Mean St.Dev. Min Max 25th percentile 75th percentile Count
Stranded -0.00 0.01 -0.13 0.09 -0.01 0.01 5536
Emission  0.00 0.01 -0.12 0.14 -0.00 0.01 5536
BMG 0.00 0.01  -0.11 0.11 -0.01 0.01 3404
CEP -0.00 0.01 -0.10 0.14 -0.01 0.00 5158
SPY 0.00 0.01 -0.12 0.14 -0.00 0.01 5536
COVOL  0.60 0.30 0.02 2.83 0.41 0.73 5431

Table B.1: Factors Summary Statistics The sample is daily from 2000 to 2021. Stranded,
Emission, BMG, CEP each denotes stranded asset factor, emission factor, brown minus green factor,
and climate efficient factor mimicking portfolio factor.

Stranded Emission BMG CEP

SPY COVOL

Stranded 1.00
Emission 0.38

BMG -0.24
CEP -0.28
SPY 0.10

COVOL -0.05

1.00
-0.16
-0.79
0.89
-0.01

1.00
0.34  1.00
-0.20 -0.79 1.00

0.06 0.02 -0.01 1.00

Table B.2: Factors Correlations The sample is daily from 2000 to 2021. Stranded, Emission,
BMG, CEP each denotes stranded asset factor, emission factor, brown minus green factor, and
climate efficient factor mimicking portfolio factor.
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Mean St.Dev. 25th percentile 75th percentile Count

Log Assets 19.65  1.20 18.64 20.66 696
Leverage 0.89 0.02 0.88 0.90 696
ROA 0.01 0.00 0.00 0.01 696
Loans/Assets 0.49 0.22 0.31 0.66 696
Deposits/Assets 0.68 0.16 0.66 0.78 696
Book/Market 1.00 0.35 0.75 1.18 696
Loan Loss Reserves/Loans 0.01 0.01 0.01 0.02 696
Non-interest Income/Net Income 2.32 3.97 1.40 3.07 696
Market Beta 1.04 0.23 0.88 1.16 696
Climate Beta 0.12 0.24 -0.03 0.23 696
Loan Portfolio Climate Beta 0.11 0.08 0.05 0.14 696
Loan Portfolio Climate Beta (Unlevered) 0.05 0.04 0.02 0.06 696
Brown Loan Share 0.03 0.02 0.02 0.04 696
Brown PD Spread 0.01 0.01 -0.00 0.02 521

Table B.3: Bank-level Data Summary Statistics Quarterly data from 2012 Q2 to 2021 Q4
for listed US banks in Y-14. The first eight variables (from Log Assets to Non-interest Income
Ratio) are from FR Y-9C. All variables are defined in Table A.1.
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o @ 6 @ 6 © O © (@© @ (1) @12) 13) (14

(1)  Log Assets 1.00

(2)  Leverage 0.26  1.00

(3) ROA 0.03 -0.14  1.00

(4)  Loans/Assets -0.48 -0.68 0.16 1.00

(5)  Deposits/Assets -0.64 -0.24 0.08 0.53 1.00

(6)  Book/Market 020 -0.28 -0.34 005 -0.25 1.00

(7)  Loan Loss Reserves/Loans 0.19 -0.36 -0.00 0.41 0.02 044 1.00

(8)  Non-interest Income/Net Income 0.10 0.18 -0.13 -0.21 -0.11 0.15 -0.05 1.00

(9) Market Beta 0.18 0.12 -0.19 -0.26 -0.25 0.40 0.15 0.01 1.00

(10) Climate Beta 0.09 0.14 -0.07r -0.07 0.056 0.28 0.21 0.12 0.29 1.00

(11) Loan Portfolio Climate Beta 0.16 0.06 -0.15 0.03 -0.03 0.35 046 0.10 021 0.61 1.00

(12) Loan Portfolio Climate Beta (Unlevered) 0.14 -0.07 -0.17 0.10 -0.09 0.41 048 0.08 0.20 0.44 0.93 1.00

(13) Brown Loan Share 0.00 0.13 0.02 007 -0.02 0.08 0.11 -0.06 0.11 0.29 0.27 0.21 1.00
(14) Brown PD Spread 0.08 0.10 -0.19 -0.04 0.03 0.10 0.19 0.08 0.28 042 0.27 0.13 0.14 1.00

Table B.4: Bank-level Data Correlations Quarterly data from 2012 Q2 to 2021 Q4 for listed US banks in Y-14. The first nine
variables (from Log Assets to Non-interest Income Ratio) are from FR Y-9C. All variables are defined in Table A.1.



C Event Study: Supplementary Results
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Figure C.1: Climate Factor Responses to Climate Change Events, after Controlling for
COVOL Each panel plots the cumulative coefficient y on shock; in CF; = a+ Zi:o Yn Shock_n,+
MKT; + COVOL; + € for each climate factor CF. shock; takes a value of 1 if there was a green
event, a value of -1 if there was a brown event, and a value of 0 if there was no transition-
related climate event on the day t. COV OL denotes the global common volatility of Engle and
Campos-Martins (2023) and we use it as a proxy for geopolitical risk. Each climate factor series is
standardized by its volatility. The standard errors are Newey-West adjusted and the band shows
95% confidence interval.
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Table C.1: List of Shock Events, extended from Barnett (2019)

Date Event Shock| Source Type
11/7/2000 | George W. Bush Elected POTUS -1 U.S. Presidential Elections | election
11/25/2000 | COP 6, The Hague, Netherlands 1 IPCC ipce
3/28/2001 | President George W. Bush withdraws from the Kyoto negotiations | -1 Wikipedia policy
7/27/2001 | COP 6, Bonn, Germany 1 IPCC ipcc
9/29/2001 | IPCC Third assessment report 1 IPCC ipcc
11/10/2001 | COP 7, Marrakech, Morocco 1 IPCC ipcc
5/13/2002 | Farm Security and Rural Investment Act 1 Wikipedia policy
11/1/2002 | COP 8, New Delhi, India 1 IPCC ipcc
2/6/2003 President Bush Unveils the Hydrogen Fuel Initiative 1 ProCon.org policy
2/27/2003 | Plans Announced to Build World’s First Zero Emissions Coal Power | 1 ProCon.org policy
Plant
12/12/2003 | COP 9, Milan, Italy 1 IPCC ipcc
11/2/2004 | George W. Bush Elected POTUS -1 U.S. Presidential Elections | election
12/17/2004 | COP 10, Buenos Aires, Argentina 1 IPCC ipce
1/1/2005 | EU Emissions Trading Scheme is launched, the first such scheme | 1 Wikipedia/IPCC policy
2/16/2005 | Kyoto Protocol comes into force (not including the US or Australia) | 1 Wikipedia/TPCC policy
7/8/2005 3lat GS summit discusses climate change, relatively little progress | 1 Wikipedia misc
made
8/8/2005 Energy Policy Act 1 Wikipedia policy
11/9/2005 | US House Prevents Drilling for Oil in the Arcetic National Wildlife | 1 ProCon.org policy
Refuge
12/9/2005 | COP 11/CMP 1, Montreal, Canada 1 Wikipedia/IPCC ipcc
1/1/2006 IPCC’s Clean Development Mechanism Opens 1 IPCC ipce
10/30/2006 | The Stern Review is published 1 Wikipedia misc
11/17/2006 | COP 12/CMP 2, Nairobi, Kenya 1 IPCC ipcc
2/16/2007 | February 2007 Washington Declaration 1 IPCC ipcc
6/7/2007 | 33rd G8 summit 1 IPCC ipce
7/31/2007 | 2007 UN General Assembly plenary debate 1 IPCC ipcc
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8/3/2007 | September 2007 Washington conference 1 IPCC ipcc
8/31/2007 | 2007 Vienna Climate Change Talks and Agreement 1 IPCC ipcc
9/24/2007 | September 2007 United Nations High-Level-Event 1 IPCC ipce
11/17/2007 | IPCC Fourth assessment report 1 IPCC/ProCon.org ipcc
12/17/2007 | COP 13/CMP 3, Bali, Indonesia 1 IPCC ipcc
12/19/2007 | Energy Independence and Security Act 1 Wikipedia policy
1/1/2008 | IPCC’s Joint Implementation Mechanism Starts 1 IPCC ipcc
1/30/2008 | First Commercial Cellulosic Ethanol Plant Goes Into Production | 1 ProCon.org misc
5/22/2008 | Food, Conservation, and Energy Act 1 Wikipedia policy
10/7/2008 | National Biofuel Action Plan Unveiled 1 ProCon.org policy
11/4/2008 | Barack Obama Elected POTUS 1 U.S. Presidential Elections | election
12/12/2008 | COP 14/CMP 4, Poznan, Poland 1 IPCC ipcc
12/22/2008 | Worst Coal Ash Spill in US History in Kingston, Tennessee 1 ProCon.org misc
2/17/2009 | ARRA (2009) Contains Funding for Renewable Energy 1 ProCon.org/Wikipedia policy
4/22/2009 | First Framework for Wind Energy Development on the US Outer | 1 ProCon.org policy
Continental Shelf Announced
5/5/2009 President Obama Issues Presidential Directive to USDA to Expand | 1 ProCon.org policy
Access to Biofuels
5/27/2009 | US Announces Funding in Recovery Act Funding for Solar and | 1 ProCon.org policy
Geothermal Energy Development
6/26/2009 | U3 House of Representatives passes the American Clean Energy | 1 Wikipedia policy
and Security Act (Waxman)
9/22/2009 | September 2009 United Nations Secretary General’s Summit on | 1 IPCC ipcc
Climate Change
10/27/2009 | US Invests $3.4 Billion to Modernize Energy Grid 1 ProCon.org policy
12/18/2009 | COP 15/CMP 5, Copenhagen, Dennmark 1 IPCC ipcc
4/20/2010 | BP Oil Rig Explodes & Causes Largest Oil Spill in US History 1 ProCon.org misc
12/10/2010 | COP 16/CMP 6, Canciin, Mexico 1 IPCC ipcc
3/11/2011 | Earthquake off Coast of Japan Damages Six Powerplants at | 1 ProCon.org misc

Fukushima
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9/1/2011 Solar Power Company Solyndra Declares Bankruptcy -1 ProCon.org misc

11/22/2011 | California cap-and-trade passed 1 Misc policy

12/9/2011 | COP 17/CMP 7, Durban, South Africa 1 IPCC ipcc

2/9/2012 | US Nuclear Regulatory Commission (NRC) Approves New Nuclear | 1 ProCon.org policy
Power Plants

3/27/2012 | EPA Announces First Clean Air Act Standard for Carbon Pollution | 1 ProCon.org policy
from New Power Plants

4/17/2012 | EPA Issues First Ever Clean Air Rules for Natural Gas Produced | 1 ProCon.org policy
by Fracking

11/6/2012 | Barack Obama Elected POTUS 1 U.S. Presidential Elections | election

12/7/2012 | COP 18/CMP 8, Doha, Qatar 1 IPCC ipcc

1/1/2013 | California cap-and-trade effective 1 Misc policy

6/25/2013 | President Obama Releases His Climate Action Plan 1 ProCon.org policy

9/20/2013 | EPA Issues New Proposed Rule to Cut Greenhouse Gas Emissions | 1 ProCon.org policy
from Power Plants

9/27/2013 | IPCC Releases lat Part of Fifrth Assesment Report, Working Group | 1 IPCC ipcc
1

11/23/2013 | COP 19/CMP 9, Warsaw, Poland 1 IPCC ipcc

2/13/2014 | Ivanpah, the World’s Largest Concentrated Solar Power Generation | 1 ProCon.org misc
Plant, Goes Online

3/31/2014 | IPCC Releases 1st Part of Fifth Assessment Report, Working | 1 IPCC ipcc
Group 2

4/14/2014 | IPCC Releases 3rd Part of Fifth Assessment Report, Working | 1 IPCC ipcc
Group 3

5/9/2014 President Obama Announces Solar Power Commitments and Ex- | 1 ProCon.org policy
ecutive Actions

6/2/2014 EPA Proposes First Ever Rules to Reduce Carbon Emissions from | 1 ProCon.org policy
Existing Power Plants

9/22/2014 | Rockefellers and over 800 Global Investors Announce Fossil Fuel | 1 ProCon.org misc
Divestment

9/23/2014 | Climate Summit 2014 1 IPCC ipcc




¢9

11/1/2014 | IPCC Fifth assessment report 1 IPCC ipcc
12/12/2014 | COP 20/CMP 10, Lima, Peru 1 IPCC ipcc
1/1/2015 California cap-and-trade effective for fuel suppliers 1 Misc policy
8/3/2015 President Obama Announces Clean Power Plan 1 ProCon.org policy
9/29/2015 | Carney Speech 1 Misc misc
10/23/2015 | Clean Power Plan Finalized 1 ProCon.org policy
12/12/2015 | COP 21/CMP 11, Paris, France 1 Wikipedia/IPCC ipcc
12/22/2015 | Clean Power Plan Becomes Active 1 ProCon.org ipcc
11/8/2016 | Donald Trump Elected POTUS -1 U.S. Presidential Elections | election
11/18/2016 | COP 22/CMP 12/CMA 1, Marrakech, Morocco 1 IPCC ipcc
3/28/2017 | President Trump Signs Executive Order to Begin Reversal of Pres- | -1 ProCon.org policy
ident Obama’ Clean Power Plan
6/1/2017 President Donald Trump withdraws the United States from the | -1 Wikipedia policy
Paris Agreement
7/31/2017 | Two Nuclear Power Reactors in South Carolina Abandoned Before | -1 ProCon.org misc
Construction Completed
11/17/2017 | COP 23, Bonn, Germany 1 IPCC ipcc
12/12/2017 | One Planet Summit 1 IPCC ipcc
12/22/2017 | Tax Bill Opens Arctic National Wildlife Refuge for Oil Drilling -1 ProCon.org policy
5/9/2018 Solar Power to Be Required on All New California Homes by 2020 | 1 ProCon.org policy
10/8/2018 | Special Global Warming 1.5 Degree Celsius Report by IPCC Re- | 1 IPCC misc
leased
12/14/2018 | Katowice Climate Package adopted by Governments at COP 24, | 1 IPCC policy
Katowice, Poland
3/22/2019 | New Mexico Commits to 100% Renewable Energy for Electricity | 1 ProCon.org policy
by 2050
12/2/2019 | COP 25, Madrid, Spain 1 IPCC ipcc
3/31/2020 | EPA Lowers Fuel Economy Standards -1 ProCon.org policy
4/1/2020 Big Banks Refuse Funds for Some Fossil Fuel Projects 1 ProCon.org misc
4/15/2020 | Oil and Electricity Demands Drop during COVID-19 Pandemic ProCon.org misc
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9/23/2020 | California to Ban New Gas-Powered Cars by 2035 1 ProCon.org policy

11/3/2020 | Biden Election 1 Elections election

12/9/2020 | New York Says Employee Pension Fund Will Divest from Oil and | 1 ProCon.org policy
Gas Companies if Not Aligned with Paris Agreement

12/15/2020 | Fed joins NFGS 1 Misc misc

1/20/2021 | Joe Biden signs executive order for the United States to rejoin the | 1 Wikipedia policy
Paris Agreement

3/29/2021 | Biden Administration Announces Offshore Wind Initiative 1 ProCon.org policy

4/22/2021 | Biden Administration Pledges to Cut Greenhouse Gas Emissions | 1 ProCon.org policy
by 50%, to 52%, by 2030

4/30/2021 | Indian Nuclear Plant to Close -1 ProCon.org misc

5/11/2021 | US Approves First Major American Offshore Wind Project 1 ProCon.org policy

5/18/2021 | International Energy Agency Calls for No New Fossil Fuel Projects | 1 ProCon.org misc

8/7/2021 IPCC Sixth Assessment Report predicting 1.5 in Warming -1 Wikipedia misc

9/21/2021 | China Announces End to Building Coal-Burning Power Plants | 1 ProCon.org policy
Abroad

11/9/2021 | Major Automakers and Countries Pledge to Phase Out Gas- | 1 ProCon.org policy
Powered Cars

11/10/2021 | COP 26, Edinburgh, Scotland 1 Misc ipcc

12/15/2021 | New York City to Ban New Natural Gas Connections 1 ProCon.org policy




(1) (2) (3) (4) (5) (6)
ar(t-1,t)  car(t-1,t+1) car(t-1,t+2) car(t-1,t43) car(t-1,t+4) car(t-1,t45)

shock 0.00144  -0.00233  -0.00380%  -0.00174 0.00113  -0.000367
(-1.14) (-1.41) (-1.85) (-0.68) (-0.41) (-0.12)
Constant -0.000108  -0.000196  -0.000370  -0.000312  -0.000517  -0.000784
(-0.57) (-0.50) (-0.63) (-0.40) (-0.53) (-0.68)
N 4828 2466 1677 1282 1048 892
Adj R2  0.0000705  0.000231 0.00106 -0.000460  -0.000819  -0.00111

Stranded
*p<0.1, " p<0.05 *** p<0.01

Table C.2: Responses of Climate Factor (Stranded) to Transition-related Climate
Events The list of events is from Barnett, extended to 2021. Total of 107 events are included.
shock takes a value of 1 if the event is associated with a movement toward a greener economy
(e.g., Paris Agreement) and it takes value of -1 if the event is associated with a movement away
from a greener economy (e.g., withdrawal from the Paris Agreement). The regressions are on a
non-overlapping data. Standard errors are Newey-West adjusted. Abnormal return ar is based on
the market model: ry = a+ BPYspy; + &4, estimated on a 1-year rolling window basis: ar; = ry —

(1) (2) (3) (4) (5) (6)
ar(t-1,t)  car(t-1,t+1) car(t-1,t+2) car(t-1,t+3) car(t-1,t+4) car(t-1,t+5)
shock -0.00139 -0.00230 -0.00359* -0.00123 -0.00105 -0.000567
(-1.07) (-1.35) (-1.76) (-0.49) (-0.37) (-0.18)
Constant -0.0000997  -0.000188 -0.000344 -0.000304 -0.000469 -0.000725
(-0.52) (-0.48) (-0.58) (-0.39) (-0.48) (-0.64)
N 4733 2418 1644 1258 1028 875

Adj R2 0.0000536 0.000216 0.000903 -0.000630 -0.000855 -0.00111

Stranded
*p<0.1, " p<0.05 ** p<0.01

Table C.3: Responses of Climate Factor (Stranded) to Transition-related Climate
Events after Controlling for COVOL The list of events is from Barnett, extended to 2021.
Total of 107 events are included. shock takes a value of 1 if the event is associated with a movement
toward a greener economy (e.g., Paris Agreement) and it takes a value of -1 if the event is associated
with a movement away from a greener economy (e.g., withdrawal from the Paris Agreement). The
regressions are on non-overlapping data. Standard errors are Newey-West adjusted. Abnormal
return ar is based on a two-factor model: r;, = a + BPYspy; + % covol; + £, estimated on a
1-year rolling window basis; ar; = ry — 7%
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(1) (2) (3) (4) (5) (6)
ar(t-1,t)  car(t-1,t+1) car(t-1,t+2) car(t-1,t+3) car(t-1,t+4) car(t-1,t+5)

shock “0.00101%%F  -0.00179%*  -0.00191%F  -0.00210"*  -0.00110  -0.000863
(-2.25) (-2.44) (-2.38) (-2.26) (-1.11) (-0.85)
Constant -0.0000571  -0.000101  -0.000230  -0.000254  -0.000364  -0.000532
(-0.82) (-0.73) (-1.11) (-0.87) (-1.05) (-1.37)
N 4828 2466 1677 1282 1048 892
AdjR2  0.000731  0.00228 0.00271 0.00258 0.0000283  -0.000456

Emission
*p< 0.1, p<0.05 ** p<0.01

Table C.4: Responses of Climate Factor (Emission) to Transition-related Climate
Events The list of events is from Barnett, extended to 2021. Total of 107 events are included.
shock takes a value of 1 if the event is associated with a movement toward a greener economy
(e.g., Paris Agreement) and it takes a value of -1 if the event is associated with a movement away
from a greener economy (e.g., withdrawal from the Paris Agreement). The regressions are on non-
overlapping data. Standard errors are Newey-West adjusted. Abnormal return ar is based on the
market model: r; = a + BPYspy; + &, estimated on a 1-year rolling window basis: ar; = ry — 74

(1) (2) (3) (4) (5) (6)
ar(t-1,t)  car(t-1,t+1) car(t-1,t+2) car(t-1,t+3) car(t-1,t+4) car(t-1,t+5)
shock -0.00102**  -0.00179**  -0.00185**  -0.00198** -0.00103 -0.00103
(-2.26) (-2.39) (-2.28) (-2.15) (-1.03) (-1.00)
Constant -0.0000296  -0.0000545 -0.000157 -0.000159 -0.000265 -0.000403
(-0.44) (-0.40) (-0.76) (-0.56) (-0.77) (-1.06)
N 4733 2418 1644 1258 1028 875
Adj R2 0.000785 0.00241 0.00268 0.00236 -0.0000790 -0.000136

Emission
*p<0.1, " p<0.05 *** p<0.01

Table C.5: Responses of Climate Factor (Emission) to Transition-related Climate
Events after Controlling for COVOL The list of events is from Barnett, extended to 2021.
Total of 107 events are included. shock takes a value of 1 if the event is associated with a movement
toward a greener economy (e.g., Paris Agreement) and it takes a value of -1 if the event is associated
with a movement away from a greener economy (e.g., withdrawal from the Paris Agreement). The
regressions are on non-overlapping data. Standard errors are Newey-West adjusted. Abnormal
return ar is based on a two-factor model: r;, = a + BPYspy; + % covol; + £, estimated on a
1-year rolling window basis: ar; = r; — 7y
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(1) (2) (3) (4) (5) (6)
ar(t-1,t)  car(t-1,t+1) car(t-1,t+2) car(t-1,t+3) car(t-1,t+4) car(t-1,t+5)

shock -0.00363**  -0.00810%%*  -0.0130%**  -0.0117%%*  -0.0114%**  -0.0107*F
(-2.14) (-3.38) (-4.12) (-3.49) (-2.86) (-2.30)
Constant  0.0000418  0.0000782  0.000169  0.0000220  0.000315 0.000407
(0.19) (0.17) (0.24) (0.02) (0.28) (0.29)
N 2884 1474 1004 766 630 535
AdjR2  0.00192 0.00938 0.0240 0.0175 0.0172 0.0125

BMG
*p < 0.1, * p<0.05 ** p<0.01

Table C.6: Responses of Climate Factor (Brown minus Green) to Transition-related
Climate Events The list of events is from Barnett, extended to 2021. Total of 107 events are
included. shock takes a value of 1 if the event is associated with a movement toward a greener
economy (e.g., Paris Agreement) and it takes a value of -1 if the event is associated with a movement
away from a greener economy (e.g., withdrawal from the Paris Agreement). The regressions are on
non-overlapping data. Standard errors are Newey-West adjusted. Abnormal return ar is based on
the market model: ry = a+ BPYspy; + &4, estimated on a 1-year rolling window basis: ar; = ry —

(1) (2) (3) (4) (5) (6)
ar(t-1,t)  car(t-1,t+1) car(t-1,t+2) car(t-1,t+3) car(t-1,t+4) car(t-1,t+5)
shock -0.00370**  -0.00819***  -0.0130***  -0.0117***  -0.0114%** -0.0107**
(-2.19) (-3.42) (-4.08) (-3.45) (-2.81) (-2.30)
Constant  0.000124 0.000245 0.000404 0.000371 0.000706 0.000865
(0.57) (0.54) (0.58) (0.40) (0.63) (0.61)
N 2884 1474 1004 766 630 535
Adj R2 0.00203 0.00970 0.0242 0.0177 0.0173 0.0128

BMG
*p<0.1,* p<0.05 ** p<0.01

Table C.7: Responses of Climate Factor (Brown minus Green) to Transition-related
Climate Events after Controlling for COVOL The list of events is from Barnett, extended
to 2021. Total of 107 events are included. shock takes a value of 1 if the event is associated
with a movement toward a greener economy (e.g., Paris Agreement) and it takes a value of -1 if
the event is associated with a movement away from a greener economy (e.g., withdrawal from the
Paris Agreement). The regressions are on non-overlapping data. Standard errors are Newey-West
adjusted. Abnormal return ar is based on a two-factor model: r; = a+ B°PY spy; + 3" covoly + &4,
estimated on a 1l-year rolling window basis; ar; = ry — 7
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(1) (2) (3) (4) (5) (6)
ar(t-1,t)  car(t-1,t+1) car(t-1,t+2) car(t-1,t+3) car(t-1,t+4) car(t-1,t+5)

shock 0.000741  -0.000101  -0.000602  -0.00151 ~0.00128 -0.00126
(0.83) (-0.08) (-0.35) (-0.81) (-0.60) (-0.53)
Constant  0.0000105  0.000105  0.000286  0.0000994  0.000410  0.000436
(0.09) (0.44) (0.76) (0.20) (0.69) (0.60)
N 4480 2289 1557 1192 973 829

Adj R2  -0.0000276  -0.000434 -0.000526 -0.000145 -0.000519 -0.000763

CEP
*p < 0.1, * p<0.05 ** p<0.01

Table C.8: Responses of Climate Factor (CEP) to Transition-related Climate Events
The list of events is from Barnett, extended to 2021. Total of 107 events are included. shock
takes a value of 1 if the event is associated with a movement toward a greener economy (e.g.,
Paris Agreement) and it takes a value of -1 if the event is associated with a movement away from
a greener economy (e.g., withdrawal from the Paris Agreement). The regressions are on non-
overlapping data. Standard errors are Newey-West adjusted. Abnormal return ar is based on the
market model: r; = a + B*PYspy; + &, estimated on a 1-year rolling window basis: ar; = ry — 74

(1) (2) (3) (4) (5) (6)
ar(t-1,t)  car(t-1,t4+1) car(t-1,t+2) car(t-1,t+3) car(t-1,t+4) car(t-1,t+5)
shock 0.000704 -0.000150 -0.000629 -0.00146 -0.00116 -0.00111
(0.80) (-0.12) (-0.37) (-0.80) (-0.55) (-0.47)
Constant -0.00000564  0.0000719 0.000227 0.0000231 0.000297 0.000306
(-0.05) (0.30) (0.61) (0.05) (0.51) (0.43)
N 4480 2289 1557 1192 973 829

Adj R2 -0.0000444 -0.000429 -0.000513 -0.000172 -0.000600 -0.000857

CEP
*p<0.1,* p<0.05 ** p<0.01

Table C.9: Responses of Climate Factor (CEP) to Transition-related Climate Events
after Controlling for COVOL The list of events is from Barnett, extended to 2021. Total of
107 events are included. shock takes a value of 1 if the event is associated with a movement toward
a greener economy (e.g., Paris Agreement) and it takes a value of -1 if the event is associated
with a movement away from a greener economy (e.g., withdrawal from the Paris Agreement). The
regressions are on non-overlapping data. Standard errors are Newey-West adjusted. Abnormal
return ar is based on a two-factor model: r;, = a + BPYspy; + % covol; + £, estimated on a
1-year rolling window basis: ar; = r; — 7y
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D DCB Model Estimation

ri = log(1 + Ry), rme = log(1 4+ Rp), ret = log(1 + Re)

Conditional on the information set F;_ 1, the return triple has a distribution D with zero
mean and time-varying covariance:

2

Tit Ot PimtTitOmt  PictTitOct
_ 2
T'mt Fio1~D 0, H, = PimtOitOmt Ot PrmctOmtOct
2
Tet PictOit0 ct PmctOmitO ct O

We use a GJR-GARCH volatility model and DCC correlation model. The GJR-GARCH
model for volatility dynamics are:

2 2 2 - 2
Oy = Wyi + QT + rYViTit—lji,t—l + Bvioi_1, (9)
2 2 2 - 2

Ot = Wym + QumT, g + ’YVmetfljm,tfl + BvmOi_1, (10)

2 2 2 - 2

O = Wve T Qyelg 1 + ’YVcrct—1Ic,t—1 + Bveoaq (11)

where [, =1itry; <0, I, =11t r,, <0,and I, =1if r, <O0.

The correlation of the volatility-adjusted returns e; = 7i/0u, €mt = Tmi/Ome, and ey =
Tet/Oct 18:

€it L pimt  Pict
Cor €Emt - Rt = | Pimt 1 Pmect| = diag(Qimct>_1/2 Qimct diag(Qimct)_1/2
€ct Pict Pmct 1

The DCC model specifies the dynamics of the pseudo-correlation matrix Q. as:

/

€it Eit
Qimct - (1 — Qg — /BCZ)SZ + aci | Emt Emt + ﬂCiQimct—l (12>
€ct €ct

where Sj; is the unconditional correlation matrix of adjusted returns.
The market beta S3* and the climate beta 55"™¢ are:

Mkt 2 -1

it _ Ot PmctOmtOct PimtTitOmt 13

Climate | — 2 ) ) ( )
pmct OmtOct Uct cht 0;t0ct

it
Estimation procedure is as follows:
1. For each bank i = 1--- N, estimate GARCH parameters and DCC parameters.

2. Take the median DCC parameters, s = median(a¢;) and Sz = median(S¢;).

3. Compute SM* and BS%mate based on the median DCC parameters, as and (g, and
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the volatility parameters.®”

Here are the estimated parameters for the top 10 US banks.

Bank alpha alphaSE gamma gammaSE beta betaSE
A:US 0.0349 0.0147  0.0836 0.0197  0.9189 0.0223
B:US 0.0278 0.0186 0.1102 0.0257  0.9038 0.0252
C:US 0.0406 0.0094 0.0981 0.0164  0.9065 0.0136
D:US 0.0452 0.0147 0.1012 0.0324  0.8939 0.0182
E:US 0.0304 0.0111 0.0632 0.0195  0.9299 0.0165
F:US 0.0318 0.0101 0.1227 0.021 0.8994 0.0178
G:US 0.0289 0.0091 0.1014 0.0165  0.9137 0.0135
H:US 0.0543 0.0165 0.1566 0.0514  0.8536 0.0403
LLUS 0.0349 0.012  0.105 0.0162  0.9078 0.0167
J:US 0.0326 0.0143  0.1036 0.028 0.9114 0.0264

Table D.1: Volatility Parameters

Bank alpha alphaSE beta betaSE
A:US 0.0301 0.0055 0.962  0.0077
B:US 0.0229 0.0079 09711 0.0115
C:US 0.0259 0.004 09676 0.0056
D:US 0.0129 0.0093 0.983  0.0132
E:US 0.0236 0.0036 0.9712  0.005
F:US 0.0289 0.0037 0.9636 0.0052
G:US 0.0219 0.0039 0.9724 0.0055
H:US 0.0269 0.0061 0.9655 0.0087
LLUS 0.0255 0.0038 0.9696  0.005
J:US 0.0289 0.0045 0.9657 0.0057

Table D.2: DCC Parameters

30The results are robust to using an individual bank’s DCC parameters instead of the median DCC
parameters.
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E CRISK Derivation

r ) CF MFEt
L~ LRMES; = E; |1+ Risypon| po — 1= 0 5y — 1 :0}
L t+1 t+1
B h
i\ | P P
= B |exp er) por —1=—0, 5y —1=0
i = t+1 t+1

h
o Mkt Mkt Climate,, .CF
= F, |exp E i trg !t + it+i | t+g + 5i,t+j>

j=1

PtM{m;—f— j Ptq—lf t+75

+ ) )

= Et exp 6%“ 10g PTM] + ﬂgF log PC’F J
t+1 t+1

= exp (55" log(1 — 0))

CF ' DMkt
Pt+1 Pt+1

PCF PMk;t
t+h_1:_0’ t+h_1:0

CF MEt
Pt+1 ]Dt—i—l

Therefore,

CRISKy = kDy — (1 — k)W {1+ B[R}, 1 | RS o < C1}
\—LRMES;,

= kD — (1 — k)W exp (85" log(1 — 6))
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F Climate Betas of Non-US Banks
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Figure F.1: Climate Betas of UK Banks The sample banks are the top 5 largest UK banks
by average total assets in 2019. The sample period is from June 2000 to December 2021.
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Figure F.2: Climate Betas of Canadian Banks The sample banks are the top 6 largest
Canadian banks by average total assets in 2019. The sample period is from June 2000 to December

2021.
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Figure F.3: Climate Betas of Japanese Banks The sample banks are the top 3 largest
Japanese banks by average total assets in 2019. The sample period is from June 2000 to December

2021.
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Figure F.4: Climate Betas of French Banks The sample banks are the top 3 largest French
banks by average total assets in 2019. The sample period is from June 2000 to December 2021.
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G CRISKs of Non-US Banks
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Figure G.5: CRISKs of UK Banks The sample banks are the top 5 largest UK banks by
average total assets in 2019. The sample period is from June 2000 to December 2021.
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Figure G.6: CRISKs of Canadian Banks The sample banks are the top 6 largest Canadian
banks by average total assets in 2019. The sample period is from June 2000 to December 2021.
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Figure G.7: CRISKs of Japanese Banks The sample banks are the top 3 largest Japanese
banks by average total assets in 2019. The sample period is from June 2000 to December 2021.
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Figure G.8: CRISKs of French Banks The sample banks are the top 3 largest French banks
by average total assets in 2019. The sample period is from June 2000 to December 2021.

H CRISK Decomposition of Non-US banks

Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK

A:LN 56.52 80.38 23.86 13.39 3.48 7
B:LN 17.72 93.4 75.68 21.75 33.8 20.12
C.LN 17.74 42.28 24.54 1.88 11.54 11.12
D:LN 26.28 39.77 13.5 3.59 5.83 4.07
E:LN  16.84 27.76 10.92 3.64 5.78 1.5

Table H.1: CRISK Decomposition (UK) CRISK(¢) is the bank’s CRISK at the end of 2020,
and CRISK(¢ — 1) is CRISK at the end of year 2019. dCRISK= CRISK(¢)-CRISK(t — 1) is the
change in CRISK during 2020. dDEBT is the contribution of the firm’s debt to CRISK. dEQUITY
is the contribution of the firm’s equity position on CRISK. dRISK is the contribution of an increase
in climate beta to CRISK. All amounts are in billions USD.
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Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK

A:CN 1191 25.02 13.11 7.37 0.5 5.24
B:CN 5.91 22.94 17.03 5.6 2.53 8.9

C:CN  12.69 16.34 3.64 7.09 —0.62 —2.82
D:CN —-0.07 3.73 3.8 2.58 —0.26 1.47
E:CN —6.55 8.83 15.38 15.62 —2.36 2.12
F:CN 7.31 29.46 22.15 16.42 —0.06 2.79

Table H.2: CRISK Decomposition (Canada) CRISK(t) is CRISK at the end of 2020, and
CRISK(t-1) is CRISK at the end of year 2019. dCRISK= CRISK(t)-CRISK(t-1) is the change in
CRISK during 2020. dDEBT is the contribution of the firm’s debt to CRISK. dEQUITY is the
contribution of the firm’s equity position on CRISK. dRISK is the contribution of an increase in
climate beta to CRISK.

Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK

AJP  160.14 186.56 26.41 9.42 9.52 7.48
B:JP 101.19 126.27 25.08 11.27 5.92 7.89
C:JP 107.84 125.43 17.59 5.19 2.39 7.01

Table H.3: CRISK Decomposition (Japan) CRISK(t) is CRISK at the end of 2020, and
CRISK(t-1) is CRISK at the end of year 2019. dCRISK= CRISK(t)-CRISK(t-1) is the change in
CRISK during 2020. dDEBT is the contribution of the firm’s debt to CRISK. dEQUITY is the
contribution of the firm’s equity position on CRISK. dRISK is the contribution of an increase in
climate beta to CRISK.

Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK

A:FP  71.02 105 33.97 19.67 3.08 11.23
B:FP 66.98 127.6 60.62 37.71 5.06 17.85
C:FP 59.19 82.59 23.41 10.22 7.01 6.17

Table H.4: CRISK Decomposition (France) CRISK(t) is CRISK at the end of 2020, and
CRISK(t-1) is CRISK at the end of year 2019. dCRISK= CRISK(t)-CRISK(t-1) is the change in
CRISK during 2020. dDEBT is the contribution of the firm’s debt to CRISK. dEQUITY is the
contribution of the firm’s equity position on CRISK. dRISK is the contribution of an increase in
climate beta to CRISK.
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I Marginal CRISKs of Non-US Banks
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Figure I.1: Marginal CRISKs: UK The sample banks are the top 5 largest UK banks by
average total assets in 2019. Marginal CRISK is the difference between the stressed CRISK and
non-stressed CRISK. The stressed CRISK is computed as: kD — (1—k) exp (81 log(1 — 6)) W
and the non-stressed CRISK is computed as: kD — (1 — k)W where k is prudential capital ratio, D
is debt, and W is market equity of each bank. The marginal CRISK values are truncated at zero.
The sample period is from June 2000 to December 2021.
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Figure 1.2: Marginal CRISKs: Canada The sample banks are the top 6 largest Canadian
banks by average total assets in 2019. The marginal CRISK values are truncated at zero. The
sample period is from June 2000 to December 2021.
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Figure 1.3: Marginal CRISKs: Japan The sample banks are the top 3 largest Japanese banks
by average total assets in 2019. The marginal CRISK values are truncated at zero. The sample
period is from June 2000 to December 2021.
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Marginal CRISK, bio USD
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Figure 1.4: Marginal CRISKs: France The sample banks are the top 3 largest French banks

by average total assets in 2019. The marginal CRISK values are truncated at zero.

period is from June 2000 to December 2021.

J Full List of Financial Firms

Canada

Ticker Company Name Ticker Company Name
BMO | Bank of Montreal BNS | Bank of Nova Scotia

CIX | CI Financial Corp CM Canadian Imperial Bank of Commerce
FFH | Fairfax Financial Holdings Ltd | FNV | Franco-Nevada Corp

GWO | Great-West Lifeco Inc IAG | iA Financial Corp Inc

IFC Intact Financial Corp IGM | IGM Financial Inc

MFC | Manulife Financial Corp NA National Bank of Canada
ONEX | Onex Corp POW | Power Corp of Canada

RY Royal Bank of Canada SLF | Sun Life Financial Inc

TD Toronto-Dominion Bank X TMX Group Ltd

Table J.1: Canadian Financial Firms
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Japan

Ticker Company Name Ticker Company Name
3231 | Nomura Real Estate Holdings Inc 7167 | Mebuki Financial Group Inc
7180 | Kyushu Financial Group Inc 7181 Japan Post Insurance Co Ltd
7182 | Japan Post Bank Co Ltd 7186 | Concordia Financial Group Ltd
7327 | Daishi Hokuetsu Financial Group Inc 8253 | Credit Saison Co Ltd
8303 | Shinsei Bank Ltd 8304 | Aozora Bank Ltd
8306 | Mitsubishi UFJ Financial Group Inc 8308 | Resona Holdings Inc
8309 | Sumitomo Mitsui Trust Holdings Inc 8316 | Sumitomo Mitsui Financial Group Inc
8331 | Chiba Bank Ltd 8334 | Gunma Bank Ltd
8341 | 77 Bank Ltd 8354 | Fukuoka Financial Group Inc
8355 | Shizuoka Bank Ltd 8359 | Hachijuni Bank Ltd
8366 | Shiga Bank Ltd 8369 | Bank of Kyoto Ltd
8370 | Kiyo Bank Ltd 8377 | Hokuhoku Financial Group Inc
8379 | Hiroshima Bank Ltd 8382 | Chugoku Bank Ltd
8385 | Iyo Bank Ltd 8410 | Seven Bank Ltd
8411 | Mizuho Financial Group Inc 8418 | Yamaguchi Financial Group Inc
8421 | Shinkin Central Bank 8439 | Tokyo Century Corp
8473 | SBI Holdings Inc 8570 | AEON Financial Service Co Ltd
8572 | Acom Co Ltd 8591 | ORIX Corp
8593 | Mitsubishi HC Capital Inc 8601 | Daiwa Securities Group Inc
8604 | Nomura Holdings Inc 8628 | Matsui Securities Co Ltd
8630 | Sompo Holdings Inc 8725 | MS&AD Insurance Group Holdings Inc
8750 | Dai-ichi Life Holdings Inc 8766 | Tokio Marine Holdings Inc
8795 | T&D Holdings Inc 8801 | Mitsui Fudosan Co Ltd
8802 | Mitsubishi Estate Co Ltd 8804 | Tokyo Tatemono Co Ltd
8830 | Sumitomo Realty & Development Co Ltd | 8905 | Aeon Mall Co Ltd

Table J.2: Japanese Financial Firms
France

Ticker Company Name Ticker Company Name

ACA Credit Agricole SA ALTA | Altarea SCA

BNP BNP Paribas SA COFA | Coface SA

CAF Caisse Regionale de Credit Agricole | CNF | Caisse Regionale de Credit Agricole

Mutuel de Paris et d’Ile-de-France Mutuel Nord de France

COVv Covivio COVH | Covivio Hotels SACA

CRAV | Credit Agricole Atlantique Vendee CRSU | Credit Agricole Sud Rhone Alpes

CS AXA SA FLY | Societe Fonciere Lyonnaise SA

GFC Gecina SA GLE | Societe Generale SA

ICAD | ICADE LI Klepierre

MERY | Mercialys SA MF | Wendel SA

NXI Nexity SA ODET | Compagnie de L’Odet SA

PEUG | Peugeot Invest RF Eurazeo SA

ROTH | Rothschild & Co SCR | SCOR SE

Table J.3: French Financial Firms

82




United Kingdom

Ticker Company Name Ticker Company Name
ABDN | Abrdn Ple ADM | Admiral Group PLC
ASHM | Ashmore Group PLC BARC | Barclays PLC

BLND | British Land Co PLC BYG | Big Yellow Group PLC
CAPC | Capital & Counties Properties PLC | CBG | Close Brothers Group PLC
DLG | Direct Line Insurance Group PLC DLN | Derwent London PLC

GPE | Great Portland Estates PLC GRI | Grainger PLC
HMSO | Hammerson PLC HSBA | HSBC Holdings PLC

ICP | Intermediate Capital Group PLC IGG | IG Group Holdings PLC

11 3i Group PLC JUP | Jupiter Fund Management PLC
LAND | Land Securities Group PLC LGEN | Legal & General Group PLC
LLOY | Lloyds Banking Group PLC LSEG | London Stock Exchange Group PLC
NWG | Natwest Group PLC PHNX | Phoenix Group Holdings

PRU | Prudential PLC SDR | Schroders PLC
SGRO | Segro PLC SHB | Shaftesbury PLC

STAN | Standard Chartered PLC STJ | St James’s Place PLC

SVS | Savills PLC TCAP | TP ICAP Group PLC

UTG | UNITE Group PLC VMUK | Virgin Money UK PLC

Table J.4: UK Financial Firms
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United States

Ticker Company Name Ticker Company Name
AFG | American Financial Group Inc AFL Aflac Inc
AIG | American International Group Inc AlZ Assurant Inc
AJG | Arthur J Gallagher & Co AL Air Lease Corp
ALL | Allstate Corp ALLY | Ally Financial Inc
AMP | Ameriprise Financial Inc AON | Aon PLC
APO | Apollo Global Management Inc ARCC | Ares Capital Corp
AXP | American Express Co BAC Bank of America Corp
BEN | Franklin Resources Inc BK Bank of New York Mellon Corp
BLK | BlackRock Inc BOKF | BOK Financial Corp
BPOP | Popular Inc BRO | Brown & Brown Inc
BX Blackstone Inc C Citigroup Inc
CACC | Credit Acceptance Corp CBOE | CBOE Global Markets Inc
CBRE | CBRE Group Inc CBSH | Commerce Bancshares Inc
CFG | Citizens Financial Group Inc CFR | Cullen/Frost Bankers Inc
CI Cigna Corp CINF | Cincinnati Financial Corp
CMA | Comerica Inc CME | CME Group Inc
CNA | CNA Financial Corp COF | Capital One Financial Corp
DFS | Discover Financial Services EFX Equifax Inc
ERIE | Erie Indemnity Co EWBC | East West Bancorp Inc
FAF | First American Financial Corp FCNCA | First Citizens BancShares Inc
FHN | First Horizon Corp FITB | Fifth Third Bancorp
FNF | Fidelity National Financial Inc FRC First Republic Bank
GL Globe Life Inc GS Goldman Sachs Group Inc
HBAN | Huntington Bancshares Inc HHC | Howard Hughes Corp
HIG | Hartford Financial Services Group Inc | HUM | Humana Inc
ICE | Intercontinental Exchange Inc vz Invesco Ltd
JEF | Jefferies Financial Group Inc JLL Jones Lang LaSalle Inc
JPM | JPMorgan Chase & Co KEY | KeyCorp
KKR | KKR & Co Inc KMPR | Kemper Corp
L Loews Corp LNC Lincoln National Corp
LPLA | LPL Financial Holdings Inc MA MasterCard Inc
MCO | Moody’s Corp MET | MetLife Inc
MKL | Markel Corp MMC | Marsh & McLennan Cos Inc
MS Morgan Stanley MSCI | MSCI Inc
MTB | M&T Bank Corp NDAQ | Nasdaq Inc
NTRS | Northern Trust Corp NYCB | New York Community Bancorp Inc
ORI | Old Republic International Corp PB Prosperity Bancshares Inc
PFG | Principal Financial Group Inc PGR | Progressive Corp
PNC | PNC Financial Services Group Inc PRI Primerica Inc
PRU | Prudential Financial Inc RF Regions Financial Corp
RGA | Reinsurance Group of America Inc RJF Raymond James Financial Inc
SBNY | Signature Bank/New York NY SCHW | Charles Schwab Corp
SEIC | SEI Investments Co SIVB | SVB Financial Group
SNV | Synovus Financial Corp STT State Street Corp
TFC | Truist Financial Corp TFSL | TFS Financial Corp
THG | Hanover Insurance Group Inc TROW | T Rowe Price Group Inc
TRV | Travelers Cos Inc UNH | UnitedHealth Group Inc
UNM | Unum Group USB US Bancorp
\% Visa Inc VOYA | Voya Financial Inc
WAL | Western Alliance Bancorp WBS | Webster Financial Corp
WFC | Wells Fargo & Co WRB | WR Berkley Corp
WTW | Willis Towers Watson PLC WU Western Union Co
ZION | Zions Bancorporation

Table J.5: US Financial Firms
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K More Scenarios

K.1 Emission Factor
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Figure K.1: Climate Betas based on emission-cased factor. The sample banks are the top
10 largest US banks by average total assets in 2019. The emission-based factor is constructed
by weighting emissions across industries and weighting stock returns by market value within each
industry. The sample period is from June 2000 to December 2021.
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Marginal CRISK, bio USD
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Figure K.2: Marginal CRISKSs based on emission-cased factor. The sample banks are the
top 10 largest US banks by average total assets in 2019. The emission-based factor is constructed
by weighting emissions across industries and weighting stock returns by market value within each
industry. The sample period is from June 2000 to December 2021.
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K.2 Brown Minus Green Factor
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Figure K.3: Climate Betas based on Brown minus Green factor. The sample banks are the top
10 largest US banks by average total assets in 2019. We use the emission-based factor as brown
factor and the iShares Global Clean Energy ETF return as green factor. The sample period is from
June 2008 to December 2021.
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Figure K.4: Marginal CRISKs based on Brown minus Green factor. The sample banks are
the top 10 largest US banks by average total assets in 2019. We use the emission-based factor as
brown factor and the iShares Global Clean Energy ETF return as green factor. The sample period
is from June 2008 to December 2021.
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K.3 Climate Efficient Factor Mimicking Portfolio Factor
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Figure K.5: Climate Betas based on climate efficient factor mimicking portfolio factor. The
sample banks are the top 10 largest US banks by average total assets in 2019. The sample period
is from July 2001 to December 2021.
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Figure K.6: Marginal CRISKSs based on climate efficient factor mimicking portfolio factor.
The sample banks are the top 10 largest US banks by average total assets in 2019. The sample
period is from July 2001 to December 2021.
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LL Robustness Tests
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Figure L.7: Climate Beta after Controlling for LTG and CRD The sample banks are the
top 10 largest US banks by average total assets in 2019. First, we regress bank stock return on
LTG and CRD. Second, we regress the residual from the first step on MKT and CF and plot the
coefficient on CF using 252-day rolling window regression. LTG is log daily return on long-term
US government bond index. CRD is log daily return on investment-grade corporate bond index
and can be downloaded from Bloomberg. The sample period is from June 2000 to December 2021.
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Climate Factor Coefficient
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Figure L.8: Climate Beta after Controlling for HOUSE The sample banks are the top 10
largest US banks by average total assets in 2019. First, we regress bank stock return on HOUSE.
Second, we regress the residual from the first step on MKT and CF and plot the coefficient on CF
using 252-day rolling window regression. HOUSE is the log daily return on a bond fund specializing
in government mortgage-backed securities (VFIJX). The sample period is from February 2001 to
December 2021.
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Climate Factor Coefficient

-1.0
01janIZOOZ 01 jan|2007 01 jan|201 2 01 jan|201 7 01 jan|202£
Date

A:US — B:US
—F CUS — D:US
— EUS — FUS
— G:US H:US
— LUS — JiUS

Figure L.9: Climate Beta after Controlling for LTG, CRD, and HOUSE The sample
banks are the top 10 largest US banks by average total assets in 2019. First, we regress bank stock
return on HOUSE, LTG, and CRD. Second, we regress the residual from the first step on MKT
and CF and plot the coefficient on CF using 252-day rolling window regression. HOUSE is the log
daily return on a bond fund specializing in government mortgage-backed securities (VFIJX). LTG
is log daily return on long-term US government bond index and CRD is the log daily return on
investment-grade corporate bond index. The sample period is from February 2001 to December
2021.
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Figure L.10: Climate Beta after Controlling for COVID Industry Factor The sample
banks are the top 10 largest US banks by average total assets in 2019. First, we regress bank stock
return on a COVID industry factor. The COVID industry factor is a value-weighted return on stocks
that belong to the NAICS 3-digit industries most affected by COVID(selected by Fahlenbrach et al.
(2021)). We exclude five industries that are in the top 20 by emissions in 2020. Second, we regress
the residual from the first step on MKT and CF and plot the coefficient on CF using 252-day rolling
window regression. The sample period is from January 2001 to December 2021.
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TA.A Fixed Beta Estimation

For each firm ¢ we estimate the following OLS specification:
T = a+ ByktMKﬂ + BiClimateCFvi + €

MKT denotes return on market and SPY is used. For CF, the stranded asset factor is
used. The full sample period is 06/02/2000 - 12/31/2021 and the post-crisis sample period
is 01/01/2010 - 12/31/2021. Standard errors are Newey-West adjusted with an optimally
selected number of lags. We focus on the top 10 banks by average total assets in the year
2019.

US Banks

Bank CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N

A:US 0.12 3.03 1.53 19.61 -0.0002 -0.77 0.45 5431
B:US 0.07 2.13 1.32 27.26 -0.0002 -1.22 0.5 5431
C:US 0.11 2.94 1.66 20.58 -0.0007 -2.4 0.46 5431
D:US 0.03 0.79 1.57 24.91 -0.0002 -0.74 0.42 5431
E:US 0.02 0.56 1.35 31.33 0 -0.23 0.53 5431
F:US -0.02 -0.48 1.46 19.83 -0.0001 -0.55 0.54 5431
G:US -0.01 -0.17 1.82 19.41 -0.0004 -1.65 0.55 5431
H:US 0.03 0.93 1.24 15.78 0 0.04 0.42 5431
I.US 0 0.01 1.14 19.36 0 -0.13 0.43 5431

J:US  0.08 2.31 1.27 17.06 -0.0001 -0.43 0.43 5431

Table TA.A.1: Large banks, SPY, Stranded Asset Factor
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Bank CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
A:US 0.27 7.3 1.44 27.63 -0.0002 -0.57 0.54 3021

B:US 0.17 6.04 1.14 33.24 -0.0002 -0.77 0.54 3021
C:US 0.33 8.86 1.5 33.9 -0.0003 -1.23 0.6 3021
D:US 0.2 4.23 1.36 24.72 -0.0001 -0.34 0.51 3021
E:US 0.19 6.67 1.23 38.36 -0.0002 -0.87 0.56 3021
F:US 0.21 6.81 1.24 44.42 0 0.12 0.61 3021
G:US 0.26 8.12 1.51 34.79 -0.0002 -0.62 0.59 3021
H:US 0.15 4.53 1.2 32.47 0 -0.03 0.56 3021
LLUS 0.13 3.84 1.13 29.97 -0.0001 -0.61 0.56 3021
J:US  0.17 4.67 1.25 28.22 -0.0003 -1.11 0.55 3021

Table IA.A.2: Large banks, SPY, Stranded Asset Factor, Post-Crisis

Non-US Banks

To account for non-synchronous trading, we include a lagged value of each explanatory
variable:
rie = a + BiuM KTy + B M KT 1+ 71:CF + 72:CF1 + €

We report the bias-adjusted coefficients 8y; + fo; (labeled as MKT), 7144 + 72i (labeled
as CF) and their t-statistics below.

Bank CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N

A:LN 0.25 4.45 1.61 20.41 -0.0004 -1.08 0.24 5335
B:LN 0.15 4.74 0.97 22.08 -0.0001 -0.65 0.28 5335
C:.LN 0.2 3.79 1.33 13.21 -0.0005 -1.49 0.18 5335
D:LN 0.26 3.83 1.48 15.22 -0.0005 -1.35 0.2 5335
E:LN 0.28 5.59 1.32 16.43 -0.0002 -0.87 0.25 5335
A:CN 0.15 4.4 0.97 18.53 0.0002 1.31 0.39 5317
B:CN 0.21 6.9 0.97 20.17 0.0002 1.54 0.39 5317
C:CN 0.14 4.17 1.05 19.23 0.0001 0.35 0.44 5317
D:CN 0.17 4.79 0.96 15.45 0.0004 1.95 0.34 5317
E:CN 0.18 6.01 0.96 19.41 0.0003 2 0.42 5317
F:CN 0.15 5.29 1 24.8 0.0002 1.43 0.43 5317

AJP  0.14 3.41 0.74 13.18 -0.0002 -0.82 0.11 4909
B:JP 0.18 3.5 0.81 14.33 -0.0002 -0.79 0.13 4514

CJp  0.17 3.06 0.75 12.62 -0.0001 -0.36 0.1 4452
A:FP 027 426 1.45 19.76 -0.0002 -0.83 0.26 5000
B:FP 0.22 5.07 1.37 18.14 -0.0001 -0.36 0.27 5378
C:FpP 0.22 3.95 1.59 21.61 -0.0003 -1.01 0.28 5378

Table TA.A.3: Large banks, SPY, Stranded Asset Factor
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Bank CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N

A:LN 0.49 8.07 1.64 15.8 -0.0006 -1.6 0.32 2967
B:LN 0.31 7.44 0.87 17.01 -0.0003 -1.4 0.3 2967
C:LN 0.34 5.62 1.43 14.93 -0.0005 -1.44 0.26 2967
D:LN 0.38 6.24 1.46 16.33 -0.0006 -1.36 0.24 2967
E:LN 048 8.43 1.19 19.73 -0.0006 -1.94 0.28 2967
A:CN 0.31 10.86 0.98 12.09 0.0001 0.36 0.51 2958
B:CN 0.36  10.93 0.94 15.31 0 0.02 0.51 2958
C:CN 0.29 9.8 0.95 10.7 0 -0.21 0.52 2958
D:CN 0.32 9.28 1 10.28 0.0001 0.55 0.45 2958
E:CN 0.28 10.36 0.92 21.78 0 0.25 0.51 2958
F:CN 0.29 10.58 0.92 18.04 0.0001 0.64 0.53 2958

AJP  0.25 5.34 0.76 14.45 -0.0002 -0.64 0.14 2838
B:JP 0.24 5.64 0.72 14.41 -0.0002 -0.55 0.14 2838

CJp  0.17 3.83 0.64 12.48 -0.0003 -1.03 0.11 2838
A:FP 0.49 7.68 1.56 15.41 -0.0005 -1.26 0.31 2995
B:FP 0.43 6.73 1.52 16.95 -0.0005 -1.41 0.33 2995
C:FP 0.49 6.8 1.78 16.5 -0.0008 -1.82 0.34 2995

Table IA.A.4: Large banks, SPY, Stranded Asset Factor, Post-Crisis

IA.B Rolling Window Beta Estimation

This section presents climate beta estimates based on 252-day rolling window regressions.
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IA.B.1 US Banks
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Figure IA.B.1: Climate Beta of US Banks based on 252-day rolling window regression from
June 2000 to December 2021. The sample banks are the top 10 largest US banks by average total
assets in 2019.
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Figure 1A.B.2: Market Beta of US Banks based on 252-day rolling window regression from
June 2000 to December 2021. The sample banks are the top 10 largest US banks by average total
assets in 2019.
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IA.B.2 UK Banks
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Figure TA.B.3: Climate Beta of UK Banks based on 252-day rolling window regression from
June 2000 to December 2021. The sample banks are the top 5 largest UK banks by average total
assets in 2019.
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Figure TA.B.4: Market Beta of UK Banks based on 252-day rolling window regression from
June 2000 to December 2021. The sample banks are the top 5 largest UK banks by average total
assets in 2019.
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IA.B.3 Canadian Banks
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Figure TA.B.5: Climate Beta of Canadian Banks based on 252-day rolling window regression
from June 2000 to December 2021. The sample banks are the top 6 largest Canadian banks by

average total assets in 2019.
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Figure IA.B.6: Market Beta of Canadian Banks based on 252-day rolling window regression
from June 2000 to December 2021. The sample banks are the top 6 largest Canadian banks by

average total assets in 2019.

IA.B.4 Japanese Banks
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Figure IA.B.7: Climate Beta of Japanese Banks based on 252-day rolling window regression
from June 2000 to December 2021. The sample banks are the top 3 largest Japanese banks by

average total assets in 2019.
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Figure TA.B.8: Market Beta of Japanese Banks based on 252-day rolling window regression
from June 2000 to December 2021. The sample banks are the top 3 largest Japanese banks by

average total assets in 2019.

IA.B.5 French Banks
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Figure IA.B.9: Climate Beta of French Banks based on 252-day rolling window regression
from June 2000 to December 2021. The sample banks are the top 3 largest French banks by average

total assets in 2019.
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Figure IA.B.10: Market Beta of French Banks based on 252-day rolling window regression
from June 2000 to December 2021. The sample banks are the top 3 largest French banks by average
total assets in 2019.

IA.C Additional Robustness Results
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Figure TA.C.1: Climate Beta after Controlling for the number of seated diners The
sample banks are the top 10 largest US banks by average total assets in 2019. First, we regress bank
stock return on DINER. Second, we regress the residual from the first step on MKT and CF and
plot the coefficient on CF using 252-day rolling window regression. DINER is the daily percentage
change of the number of seated diners on same day of the same week in 2020-22 compared to the
same day of the same week in 2019 (pre-pandemic). The sample period is from February 19, 2020
to December 31, 2021. DINER data is from OpenTable.
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Figure IA.C.2: Climate Beta after Controlling for the number of air passengers The
sample banks are the top 10 largest US banks by average total assets in 2019. First, we regress
bank stock return on PASS. Second, we regress the residual from the first step on MKT and CF and
plot the coefficient on CF using 252-day rolling window regression. PASS is the daily percentage
change of the number of passengers on same day of the same week in 2020-22 compared to the
same day of the same week in 2019 (pre-pandemic). The sample period is from January 3, 2020 to
December 31, 2021. PASS data is from TSA.
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Figure IA.C.3: Climate Beta after Controlling for number of seated diners and air
passengers The sample banks are the top 10 largest US banks by average total assets in 2019.
First, we regress bank stock return on DINER and PASS. Second, we regress the residual from the
first step on MKT and CF and plot the coefficient on CF using 252-day rolling window regression.
DINER is the daily percentage change of the number of seated diners on same day of the same
week in 2020-22 compared to the same day of the same week in 2019 (pre-pandemic). PASS is
the daily percentage change of the number of passengers on same day of the same week in 2020-22
compared to the same day of the same week in 2019 (pre-pandemic). The sample period is from
February 19, 2020 to December 31, 2021. DINER data is from OpenTable and PASS data is from
TSA.
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