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Abstract 

This paper studies large sample classical and Bayesian inference in a prototypical linear DSGE model and 

demonstrates that inference on the structural parameters based on a Gaussian likelihood is unaffected by 

departures from Gaussianity of the structural shocks. This surprising result is due to a cancellation in the 

asymptotic variance resulting into a generalized information equality for the block corresponding to the 

structural parameters. The underlying reason for the cancellation is the certainty equivalence property of 

the linear rational expectation model.  

 

The main implication of this result is that classical and Bayesian Gaussian inference achieve a semi-

parametric efficiency bound and there is no need for a “sandwich-form” correction of the asymptotic 

variance of the structural parameters. Consequently, MLE-based confidence intervals and Bayesian 

credible sets of the deep parameters based on a Gaussian likelihood have correct asymptotic coverage 

even when the structural shocks are non-Gaussian. On the other hand, inference on the reduced-form 

parameters characterizing the volatility of the shocks is invalid whenever the structural shocks have a 

non-Gaussian density and the paper proposes a simple Metropolis-within-Gibbs algorithm that achieves 

correct large sample inference for the volatility parameters.  
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1 Introduction
Dynamic stochastic general equilibrium (DSGE) models are routinely used for macroeconomic

analysis by both academics and policy-makers. Their success is due to their resulting model-

based analysis being consistent with economic theory, since their microfoundations are derived

from optimisation of rational agents, in contrast to reduced-form models which typically lack a

theory-consistent story for their output.

Two essential ingredients of DSGE models are: (i) the structural �deep�parameters that de�ne

the agents�preferences and economic environment and (ii) the structural shocks that characterise

the stochastic component of the model. Given macroeconomic data, the aim of econometric

procedures is to infer about the former given assumptions on the latter.

Applied work on DSGE models originally employed data-informed calibration of the para-

meters (e.g. Kydland and Prescott (1996)), and later full-information estimation procedures:

classical MLE (e.g. Altug (1989), Ireland (2004)) or Bayesian methods (e.g. Schorfheide (2000),

Fernández-Villaverde and Rubio-Ramírez (2004), Smets and Wouters (2007)). Bayesian methods

have become the preferred estimation procedure for DSGE models in the literature since they

provide greater control over the parameter space through the use of prior information, which is

often available because of the microfoundation of the structural parameters. As such, Bayesian

methods amount to a �exible combination between data-based econometric estimation and earlier

calibration methods with the tightness of the imposed priors controlling the relative importance

of the two.

The aim of this paper is to investigate the asymptotic validity of classical and Bayesian inference

on the structural parameters in a DSGE model whenever the distributional assumption on the

model�s structural shocks is misspeci�ed. Since both classical and Bayesian methods are full-

information, such distributional assumptions are required, and the standard assumption made in

the literature is Gaussianity, which is convenient since it permits the use of the Kalman �lter

to evaluate the likelihood function. Even a small degree of distributional misspeci�cation can,

in general, invalidate MLE and Bayesian inference whenever the generalised information equality

for the quasi-likelihood function is violated, resulting in a �sandwich-form�large sample variance

for the model�s parameters; e.g. see White (1982), Gourieroux et al. (1984), Bollerslev and

Wooldridge (1992) for MLE and Chernozhukov and Hong (2003) and Müller (2013) for Bayesian

estimation under distributional misspeci�cation.

This paper studies large sample inference in the prototypical linear DSGE model and demon-

strates that classical and Bayesian inference on the structural parameters based on Gaussian

likelihood is una¤ected by departures from Gaussianity of the structural shocks. This surpris-

ing result is at odds with previous results on Bayesian inference with linear DSGE models (e.g.

Müller (2013)) and it is due to a cancellation in the asymptotic variance resulting into information

equality for the block corresponding to the structural parameters. The underlying reason for the

cancellation is the certainty equivalence property of the linear rational expectation model, which
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implies that the solution matrices, and hence the model-implied conditional mean of the data, do

not depend on the second moment of the structural shocks. The implication of this result is that

incorrectly imposing Gaussianity assumption on the structural shocks has no large-sample e¤ect

on the validity of classical and Bayesian inference (con�dence intervals and credible sets) on the

structural parameters of the model, and hence there is no need for any �sandwich-form�correction

for the variance, previously recommended in the literature.

On the other hand, inference on the reduced-form parameters characterising the volatility of

the shocks is invalidated whenever the true structural shocks come from a distribution with skew-

ness and kurtosis di¤erent from that of the normal density. To this end, the paper proposes a

simple Metropolis-within-Gibbs algorithm that achieves valid large sample inference of the volatil-

ity parameters and practical implementation of the procedure only requires consistent estimator

of the kurtosis of the structural shocks.

The rest of the paper is organised as follows. Section 2 presents the model, assumptions and the

main result of the paper. Section 3 proposes a Metropolis-within-Gibbs estimation procedure that

achieves valid inference on the reduced-form volatility parameters. Section 4 presents a Monte Carlo

exercise demonstrating the validity of the theoretical results of Section 2 as well as the proposed

procedure of Section 3, Section 5 applies the proposed algorithm of Section 3 to a DSGE model

with �nancial frictions and Section 6 concludes. The supplementary Appendix contains some

auxiliary mathematical results, the proof of Theorem 1 of the paper, as well as some additional

results.

2 Econometric Framework
We consider a linearised rational expectation model of the form

�0 (�1)EFtxt+1 = �1 (�1)xt + �2 (�1)xt�1 + �3 (�1) "t; "tjFt�1 � (0;� (�2)) ; (1)
where �0; �1;�2 and �3 are matrix-valued functions of the k1 � 1 structural parameter vector �1
of the model; xt is an s � 1 vector of the model�s variables, "t is an m � 1 vector of structural
shocks with covariance matrix1 � (�2) ; a function of the k2 � 1 reduced-form parameter vector

�2; Ft denotes the natural �ltration of the structural shock sequence Ft = � ("t; :::; "1) and EFt�1
denotes the conditional expectation operator. The structural parameters �1 and reduced-form

parameters �2 are collected in a k�dimensional vector � = [�01; �02]
0
: The setup in (1) constitutes

the prototypical DSGE model estimated in the literature and used by policy makers and central

banks. Under regularity conditions, a solution of the dynamic rational expectation model in (1)

exists and is unique, the solution can be obtained numerically (see, for instance, Blanchard and

Kahn (1980) or Sims (2002)) and takes the form:
xt = F (�1)xt�1 +G (�1) "t; (2)

1In applied work � (�2) is typically assumed to be diagonal in order to impose orthogonality across shocks and
�2 contains the volatilities of the shocks. We leave the structure of � (�2) unrestricted; in Section 3, we provide
a discussion on the di¤erence in terms of inference between imposing orthogonality and independence when the
shocks are non-Gaussian.
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where the solution matrices F (�1) and G (�1) are functions of �1, for most models only available

numerically. Crucially, linearisation of the underlying nonlinear rational expectation model around

the deterministic steady state (i.e. setting � (�2) = 0) implies certainty equivalence: �0; �1;�2
and �3 in (1) and, hence, the solution matrices in (2) do not depend on the second moments of

the shocks �2: This is the crucial ingredient behind the result of Theorem 1 below: linearity of the

solution equation (2) alone would not deliver the generalised information equality if, for example,

the solution matrix F (�) depended on �2 (see Remark 4 after Theorem 1 for further discussion).

To take the linear DSGE model to the data, the solution in (2) is typically augmented by a

measurement equation of the form
yt = C (�1) +H (�1)xt (3)

where yt is an r � 1 vector of observables with r � m (r > m results in singularity of the

variance for yt); C (�1) is a vector typically containing model-speci�c steady-state values and

H (�1) selects and, if necessary, transforms the observables of the vector xt: Additive martingale

di¤erence measurement error in (3) can be included without changing the main result of the paper;

for brevity we omit such an extension here.

In this paper, we derive the asymptotic variance of classical ML and Bayesian estimators

for � in the DSGE model in (2) and (3) whenever the shocks "t are incorrectly modelled as

Gaussian: "tjFt�1 � N (0;� (�2)) : Before we proceed to laying down the formal assumptions and

analysing the DSGE-speci�c large-sample inference, we provide a brief discussion of the problem

that distributional misspeci�cation can cause in the general case in order to give an insight of why

the problem is absent for the deep parameters �1 of the linear DSGE model considered.

It is well-known2 that under distributional misspeci�cation and mild regularity conditions, the

quasi-ML estimator for � is consistent and has a �sandwich-form�asymptotic covariance matrix of

the form C0 = A�10 B0A�10 ; with

A0 = � plim
n!1

1

n

Pn
t=1 EFt�1

�
@`2(yt; �)

@�@�0

�
�=�0

(4)

B0 = plim
n!1

1

n

Pn
t=1 EFt�1

�
@`(yt; �)

@�

@`(yt; �)

@�0

�
�=�0

where ` (:) denotes the quasi log-likelihood function of � and �0 denotes the (pseudo) true value of

�. The reason for the di¤erent asymptotic variance (relative to the case of correct distributional

speci�cation where the asymptotic variance is given by the inverse information matrixA�10 ) is that,
in general, the information equality breaks down since expectations are taken with respect to the

true (rather than the quasi) distribution. When A0 6= B0, there is no asymptotic cancellation in
the expression for the variance and C0 6= A�10 . In this case, Bayesian inference is also invalidated
even for large samples: Chernozhukov and Hong (2003) show that given a strictly positive and

continuous prior density � (�) ; the posterior p (:) of � satis�es
p
�p

n
�
� � �0

��
!d N

�
0;A�10

�
as n!1 (5)

which has the incorrect asymptotic variance A�10 instead of C0; as a result, posterior credible sets
2See, for example, White (1982), Gourieroux et al. (1984), Bollerslev and Wooldridge (1992).
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do not contain the (pseudo) true parameter with correct coverage even when the sample size is

large. A Bayesian decision-theoretic justi�cation of this result is provided by Müller (2013), who

shows that Bayesian inference is of lower asymptotic risk whenever the posterior based on the

misspeci�ed likelihood is substituted by an arti�cial posterior with �sandwich-form� covariance

matrix.

Due to distributional misspeci�cation, classical and Bayesian estimators no longer achieve

the parametric Cramér-Rao lower bound and hence the resulting estimators are no longer para-

metrically e¢ cient. However, there are instances when a generalised version of the information

equality A�10 = C0 continues to hold in the presence of distributional misspeci�cation for some
or all elements of �; in which case a semi-parametric lower bound can be achieved and, crucially,

no erroneous inference decisions occur if distributional misspeci�cation is ignored by the practi-

tioner. A well-known example of this is the linear regression model under correctly speci�ed �rst

two conditional moments, where Gaussian inference on the conditional mean parameters is semi-

parametrically e¢ cient and robust to distributional misspeci�cation. The reason for this result

is the separability between the conditional mean and conditional variance parameters, invaliding

Gaussian inference only for the variance parameters.

While the DSGE model in (2) and (3) is linear, such separability between the conditional mean

and variance parameters is not present. The observables satisfy
ytjFt�1 � (�t (�1;xt�1) ;
 (�1; �2))

where the conditional moments are given by
�t (�1;xt�1) = C (�1) +H (�1)F (�1)xt�1 (6)


 (�1; �2) = H (�1)G (�1) � (�2)G (�1)
0H (�1)

0

and the conditional variance 
 (�1; �2) of yt always depends on the structural parameters �1
through the matrices G (�1) and H (�1) : It is perhaps due to this lack of separability that there

has been a consensus in the literature that distributional misspeci�cation of "t (and hence yt)

would invalidate classical and Bayesian asymptotic inference on all DSGE parameters � and that

a �sandwich-form�covariance is needed to robustify the posteriors in the non-Gaussian case. For

example, Müller (2013) applies his �sandwich�correction to a linear new-Keynesian DSGE model.

Canova and Matthes (2021a) and (2021b) use Müller (2013)�s �sandwich�posterior correction in

order to apply composite likelihood estimation for the parameters of linearised DSGE models. Qu

and Tkachenko (2012) propose a frequency domain quasi-maximum likelihood estimator for the

parameters of a linearised DSGE model and their asymptotic variance is of a �sandwich-form�.

Guerron-Quintana, Inoue and Kilian (2017) also correct the variance of the (quasi) posteriors of

the linear DSGE model for a �sandwich-form�.

In this paper, we establish a surprising result with important implications for DSGE-based

inference: as far as the structural parameters �1 are concerned, there is no need for such �sandwich-

form�corrections. In particular, by partitioning the parameter vector in structural and reduced-

form parameters [�01; �
0
2]
0 and looking deeper in the partitioned (quasi-) score vector and Hessian

matrix and their moments, we demonstrate that while the variance of the quasi-score vector
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when Gaussianity is imposed depends on higher (multivariate third and fourth) moments of the

shocks, classical and Bayesian objective functions based on Gaussian likelihood for the structural

parameters �1 continue to satisfy the generalised information equality for large samples, so that the

asymptotic variance of the resulting estimators for �1 is valid whether or not the true underlying

shocks were Gaussian. The advantage of having such an information equality in place for �1 is

that classical and Bayesian inference can be applied on �1 as if Gaussianity holds without the

need for any corrections involving consistent estimator for the sandwich-form variance C0: This
is particularly useful in the DSGE setup since it permits the use of the Kalman �lter (suited for

linear Gaussian state space models) even for models with non-Gaussian shocks, thus considerably

simplifying the evaluation of the likelihood function. While the use of sandwich-form covariance

is asymptotically valid in theory, in practice, obtaining good quality �rst and second derivatives

of the log-likelihood in order to compute the �sandwich-form� is di¢ cult and computationally

expensive3 since the model�s solution matrices in (2) are not available analytically for most models.

Consequently, researchers have resorted to the use of numerical derivatives, which are often of very

poor quality particularly when � is of larger dimension and can add unnecessary noise to already

poorly identi�ed models routinely estimated with very small samples of macroeconomic data. The

main result of this paper makes �sandwich-form�MLE and Bayesian posterior corrections obsolete,

thus signi�cantly streamlining DSGE inference.

The asymptotic variance for the estimator of the reduced-form volatility parameters �2 is

a¤ected by the misspeci�cation and depends both on the skewness and kurtosis of the shocks.

However, conditional on �1; inference on �2 is straightforward and only requires a consistent

estimator of the kurtosis of the structural shocks. To this end, we design a Metropolis-within-

Gibbs algorithm in Section 3 that achieves valid large sample joint posterior inference on �1 and

�2:

We now proceed to the formal analysis of the asymptotic variance of the parameters of the

DSGE model in (2) and (3). We make the following assumptions.

Assumptions:
1. Speci�cation. The DSGE model�s equations in (1) are correctly speci�ed and the data

are generated by (2) and (3) with a true vector �0 2 int� for a parameter space � � Rk with
G (�1) full column rank at �

0
1.

2. Determinacy. The solution (2) of the DSGE model in (1) is uniquely determined: for any
�1 2 �1 � Rk1 the solution matrices F (�1) and G (�1) are unique.
3. Identi�cation. The DSGE model is globally identi�ed: for any ~� = [~�

0
1;
~�
0
2]
0 2 �; the

conditional �rst two moments in (6) satisfy
�
�
�01;xt�1

�
= �

�
~�1;xt�1

�
and 


�
�01; �

0
2

�
= 


�
~�1; ~�2

�
if and only if �0 = ~�:

3It may be possible to use the Kalman �lter equations in �rst derivatives to obtain the �rst derivative of the
log-likelihood (and its variance) analytically; however, such an extension increases the dimension of the state vector
from s to sk; which would make inference even with small DSGE models prohibitively expensive computationally.
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4. Stationarity. The law of motion for xt in (2) satis�es �
�
F
�
�01
��
< 1; where � (�) denotes

the spectral radius of a matrix and the initial condition in (2) satis�es x0 = Op (1) :

5. Moments. The process for the structural shocks ("t;Ft)t�1 satis�es:
a. ("t;Ft)t�1 is a martingale di¤erence satisfying EFt�1 ["t"0t] = �

�
�02
�
> 0 for all t; with

�2 = vech� (�2) :

b. ("t;Ft)t�1 has time invariant third and fourth conditional moments:
EFt�1

�
"t (vech ["t"

0
t])
0	
= S and EFt�1

�
vech ("t"

0
t) (vech ("t"

0
t))

0�
= K (7)

for all t and K > 0:

c. The sequence
�
k"tk4

�
t�1 is uniformly integrable:
sup
t�1
E
�
k"tk4 1

�
k"tk4 > �

	�
! 0 as �!1:

6. Smoothness. The functions C (�1) ; H (�1) ; F (�1) ; and G (�1) are continuously di¤eren-
tiable over � and twice continuously di¤erentiable with Lipschitz continuous second derivatives

in a neighbourhood N
�
�0; �

�
=
�
� 2 � :



� � �0


 < �

	
for some � > 0.

7. Rank. The matrices HG and
.

HF := @vec[H(�1)F (�1)]
0

@�1
satisfy the following rank conditions:

rk (HG) = r and rk
� .
HF

�
= dim �1 � rm at �0:

Remarks.
1. Since the focus of this paper is on inference for a well-behaved model, Assumption 1 assumes

away model misspeci�cation, Assumption 2 abstracts from indeterminacy issues due to existence

of multiple solutions (sunspot equilibria) and Assumption 3 assumes away identi�cation issues and

implies that the �rst two moments globally identify � (see Iskrev (2010)). Similarly, nonstationarity

that gives rise to nonstandard classical inference is assumed away in Assumption 4; �
�
F
�
�01
��
< 1

implies stability (asymptotic covariance stationarity) of xt and hence the observables yt. Weak

stationarity implies that the unconditional covariance matrix of the state vector xt is given by VX
with kVXk <1; where VX satis�es

vec (VX) =
�
Is2 �

�
F
�
�0
�

 F

�
�0
����1 �

G
�
�0
�

G

�
�0
��
vec�

�
�0
�
: (8)

2. In the typical DSGE model, � (�2) is diagonal, since the structural shocks "t are assumed to
be mutually uncorrelated, but diagonality is not required for the main result of the paper: we allow

the covariance matrix � (�2) to be full and, for simplicity, model all its reduced-form elements as

�2 = vech� (�2). In the diagonal case, �2 = Pvec�; where P is an n�n2 semi-orthogonal selector
matrix with [P ]i;(i�1)n+i = 1 for i = 1; :::; n and zeros elsewhere and the asymptotic distribution

of �̂2 can be obtained from that of vecb� by selecting the relevant elements �̂2 = Pvecb� and their
variance V (�̂2) = PV (vecb�)P 0: Similarly, if �2 = f (vec�) for a smooth function f; a delta method

can be used to obtained the asymptotic distribution of �̂2 from that of vecb�:
3. Assumption 5a imposes conditional homoskedasticity of the structural shocks. The classic

GLS result applies here: if heteroskedasticity in � is ignored, the generalised information equality

of Theorem 1 below breaks down, even if the shocks were Gaussian, and the asymptotic variance

of �1 is of �sandwich-form�instead. However, the main result of the paper can be shown to hold

under heteroskedasticity in �; as long as the heteroskedasticity is correctly modelled explicitly in

the quasi-likelihood (for example, as in Justiniano and Primiceri (2008) or Petrova (2019)); that
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is, conditional on �1:n; the generalised information equality for �1 continues to hold.

4. Assumption 5b imposes constant conditional third and fourth moments4 S and K and

requires that K is positive de�nite. This assumption can be relaxed, allowing the conditional

moments St and Kt to change over time and requiring that S1 := plimn!1
1
n

Pn
t=1 St and K1 :=

plimn!1
1
n

Pn
t=1Kt exist; the main result of the paper continues to hold with S and K in the

limiting quantities replaced by S1 and K1.
5. Assumption 5c requires that the sequence

�
k"tk4

�
t�1 is uniformly integrable, this implies

existence of four �nite moments kKk <1 but it is weaker than 4+� �nite moments for any � > 0.

Whenever the shocks "t are identically distributed, Assumption 5c is equivalent to kKk <1:

6. Assumption 6 imposes smoothness on the model�s coe¢ cients with respect to �; while

the resulting asymptotic variance only depends on �rst derivatives, Lipschitz continuity of second

derivatives is required in a neighbourhood of �0 in order to deal with the intermediate point arising

from the linearisation of the score vector and ensure a LLN for the Hessian matrix.

7. Finally Assumption 7 imposes several rank conditions. Requiring that the number of

observables is smaller or equal to the number of shocks (r � m) is not su¢ cient for 
 to be

positive de�nite, since rk
 � min (rk (H) ; rk (G)) = r when G is full-rank. Requiring instead

that the product HG has rank r is necessary and su¢ cient for 
 to be positive de�nite, since

� > 0 and 
 is a quadratic form 
 = HG�G0H 0: Moreover, rk
.

(HF ) = dim �1 � rm is a

su¢ cient5 condition for the asymptotic variance of the (Q)MLE for �1 ([C0]11 in Theorem 1 below)
to be nonsingular. This condition is required even under correct distributional speci�cation, to

ensure that the asymptotic variance of the MLE for the structural parameters �1 is nonsingular.

Under Assumptions 1-7, it follows that, conditional on the information set Ft�1;
ytjFt�1 � (�t (�1;xt�1) ;
 (�1; �2))

with �t (�1;xt�1) and 
 (�1; �2) de�ned in (6). When the structural shocks are (incorrectly) as-

sumed to be Gaussian: "tjFt�1 � N (0;� (�2)) ; the conditional (quasi-) log-likelihood (except

constants) is given by

` (yt; �jFt�1) = �
1

2
log j
j � 1

2
tr
�

�1utu

0
t

�
(9)

where, for brevity, we suppress dependence of 
 and �t on � and xt�1 and we de�ne the residual

function ut = ut (�1;xt�1) = yt � �t: We denote by �̂ the QMLE which maximises the Gaussian

quasi log-likelihood 1
n

Pn
t=1 ` (yt; �jFt�1) : The resulting conditional quasi-score vector is given by

st (�) =
@` (yt; �jFt�1)

@�
=

"
1
2
_
1D

0
r (


�1 
 
�1)Drzt + _�t

�1ut

1
2
_
2D

0
r (


�1 
 
�1)Drzt

#
; (10)

4Note that S and K contain all third and fourth conditional cross moments EFt�1"it"jt"kt and EFt�1"it"jt"kt"lt
for i; j; k; l = 1; :::;m respectively. Another way to characterise S and K is to compute the covariance matrix of the
vector

�
"0t; vech ("t"

0
t)
0�0 which is given by � 
 S

S 0 K

�
:

5Whenever rk _C < k1 for _C =
@C(�1)

0

@�1
; which is usually the case since _C is k1 � r and the number of structural

parameters k1 typically exceeds the number of observables r; rk
.

(HF ) = dim �1 � rm is not only su¢ cient but also
necessary for nonsigularity of the asymptotic variance of �1.
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where _
1 =
(@vech
)
@�1

0
; _
2 =

(@vech
)
@�2

0
, _�t =

@�0t
@�1
, zt = zt (�1; �2;xt�1) = vech (utu

0
t � 
) and Dr is

the r2 � r (r + 1) =2 duplication matrix: Both ut and zt are explicit functions of � and whenever

Assumption 1-2 hold (i.e. �rst two conditional moments are correctly speci�ed), it follows immedi-

ately that zt and ut are martingale di¤erence sequences at the true value �
0; i.e. EFt�1

�
zt
�
�0
��
= 0

and EFt�1
�
ut
�
�0
��
= 0, which together with Assumption 3 is su¢ cient for consistency6 of the

QMLE �̂: Standard martingale CLT, established in Lemma 1 of the Appendix, implies that at �0
1p
n

Pn
t=1 st

�
�0
�
!d N (0;B0) ; B0 = plim

n!1

1

n

Pn
t=1 EFt�1

h
st
�
�0
�
st
�
�0
�0i

where the explicit expression for the asymptotic covariance B0 for the linear DSGE model is given
in the Appendix in (A.1). In particular, B0 is of nonstandard form (e.g. unlike the fully separable
case when _
1 = 0; the higher third and fourth moments S and K enter in all elements of B0).
Despite dependence of B0 on higher moments, computation of the sandwich form covariance C0 =
A�10 B0A�10 and partitioning it conformably in blocks corresponding to the structural parameters

�1 and reduced-form parameters �2 reveals a cancellation in the block corresponding to the deep

parameters �1 of the DSGE model. The result in summarised in Theorem 1 below.

Theorem 1 In the linear DSGE model under Assumptions 1-7,
p
n
�
�̂1 � �01

�
!d N

�
0;
�
A�10

�
11

�
where

�
A�10

�
11
denotes the upper k1 � k1 principal submatrix of A�10 de�ned in (4).

Remarks
1. The key result of Theorem 1 is that the generalised information equality continues to hold

for the upper block corresponding to the asymptotic variance of the structural parameters of the

DSGE model �1 due to a cancellation, that is [C0]11 =
�
A�10

�
11
: Relative to the fully separable case

when _
1 = 0 and A�10 is block-diagonal, in the DSGE setup7, _
1 6= 0 and the cancellation happens
through the o¤-diagonal blocks in A�10 and B0: Arguably, inference on the deep parameters �1 is
of utmost importance for applied researchers, frequentist and Bayesian, while inference on the

reduced-form volatility parameters �2 is of secondary interest. The key implication of Theorem

1 is that ignoring the distributional misspeci�cation and imposing Gaussian assumptions does

not a¤ect large sample MLE or Bayesian inference8 (frequentist con�dence intervals and Bayesian

credible sets) on �1 and robust �sandwich-form�corrections are unnecessary.

2. Semi-parametric e¢ ciency for �1 follows since: (i) the conditional mean �t is correctly

speci�ed, (ii) the quasi log-likelihood is Gaussian which belongs to the linear exponential family of

distributions, and (iii) the generalised information equality holds for the variance corresponding

to �1; see, for example, Proposition 4 in Gourieroux and Monfort (1993).

3. The exact expression for [C0]11 is given by [C0]11 = _C
�1 _C 0 +
.

HF (VX 
 
�1)
.

(HF )0;

where _C = @C(�1)0

@�1
;
.

HF = @vec[H(�1)F (�1)]
0

@�1
= _H (F (�1)
 Ir) + _F (Is 
H(�1)

0) ; _H = @(vecH(�1))
0

@�1
;

6This follows by the WLLN 1
n

Pn
t=1 st (�0) !L1 0 since EFt�1st (�0) = 0 and kstk is uniformly integrable

sequence (e.g. see Hall and Heyde Theorem 2.19).
7Note that the result of Theorem 1 is general and applies to any model where @�t

@�2
= 0, the speci�c DSGE model

structure is not required for the main result.
8For Bayesian estimation, this follows directly from (5) by the result of Chernozhukov and Hong (2003).
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_F = @(vecF (�1))
0

@�1
and VX is the variance of the state vector de�ned in (8). The complete expressions

for A�10 ; B0 and C0 can be found in the Appendix in (A.17), (A.1) and (A.18) respectively; we
leave them out of the main text for brevity and provide some intuition instead.

4. Since we take the linearised model in (1) as a starting point for our analysis, we provide
a brief clari�cation on the e¤ect of the linearisation on our main result. While the quality of

the linear approximation to the underlying nonlinear rational expectation model depends on how

close the model is to its deterministic steady state (i.e. how close � (�2) is to zero), it is not

directly a¤ected by departures from Gaussianity of the shocks. Moreover, the result in Theorem

1 is not driven by the linearity of the solution alone; for example, if the solution matrix F (�) and
hence the conditional mean �t were dependent on �2; the result will no longer hold. This is the

case, for example, not only with: (i) nonlinear solution methods where the underlying nonlinear

rational expectation model is solved via higher-order perturbation or projection methods (e.g.

see Auroba et al. (2005)), and so the law of motion for xt (and hence the conditional mean �t)

in general, depend on �2; but also (ii) linear risk-adjusted solution methods where the nonlinear

rational expectation model is linearlised around a risk-adjusted steady state that depends on the

volatility parameters �2 (as in Coeurdacier, Rey and Winant (2011)) and the resulting solution

matrix F (�) (and hence �t) depend on �2. Therefore, the result in Theorem 1 above is a direct

consequence of the certainty equivalence of the linearised rational expectation model. Since the

prevailing approximation method in the literature is (log)linearisation around a deterministic

steady state, due to its simplicity and computational convenience, the result of Theorem 1 has

wide-ranging implications for applied researchers, providing a formal justi�cation for the use of

Gaussian assumptions on the structural shocks. A more cautionary spin of the result in Theorem

1 suggests that linearisation around a deterministic steady state not only removes any uncertainty

e¤ects from the shocks on the solution of the model, it also eliminates any e¤ects from the non-

Gaussian features of the shocks on econometric procedures. This may be particularly undesirable

when the objective is to study higher order e¤ects of the stochastic component of the model.

5. [C0]11 does not depend on the higher moments S or K of the structural shocks, so if inference
is only needed for the structural parameters �1; Assumptions 5b and 5c are not necessary and uni-

form integrability of
�
k"tk2

�
t�0 is su¢ cient; hence fat tailed shocks (e.g. in�nite skewness/kurtosis

shocks) do not invalidate inference on �1 (see DGP V in Section 4 for simulation results with in�-

nite skewness shocks). For inference on �2; existence of higher order moments through the uniform

integrability of
�
k"tk4

�
t�1 (Assumptions 5c) is necessary.

6. For the [C0]22 block, there is no generalised information equality, [C0]22 6=
�
A�10

�
22
unless the

standardised shocks ��1=2"t have skewness S��1=2"t=0 and kurtosis K��1=2"t=Im2+Km where Km

is the m2 �m2 commutation matrix, as is the case, for example, under correct speci�cation when

the shocks are Gaussian: ��1=2"tjFt�1 � N (0; Im). Hence, both classical and Bayesian inference

on �2 would be invalid even for large samples when Gaussianity is incorrectly imposed; the degree

to which inference is invalidated will depend on how far the skewness and kurtosis of the true

shocks are from those of the Gaussian distribution.
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7. The [C0]22 block corresponding to the asymptotic variance of the reduced-form volatility

parameters �2 is nonstandard and depends not only on the kurtosis of the structural shocks (as

is the case in the fully separable case when _
1 = 0 and [C0]22 = _
0�12 Ku _
�12 ) but also on: (i)
the skewness of the shocks (whenever there is an intercept included in (3)), and (ii) various

derivatives of the solution matrices which cannot be evaluated analytically for a typical DSGE

model, rendering a good quality estimator for [C0]22 computationally di¢ cult and costly9. However,
the asymptotic variance of �2 conditional on �1 has a much simpler form that only depends

on the fourth moment of the shocks, and in Section 3, we exploit this conditioning argument

and demonstrate that robust distribution-free inference on �2 can be achieved through the use

of a simple Metropolis-within-Gibbs algorithm, at no additional computational cost relative to

standard Bayesian estimation based on the Metropolis-Hastings algorithm.

8. Gaussian-based MLE con�dence intervals and Bayesian credible sets on quantities that
depend on �2 are also incorrect whenever the true shocks are non-Gaussian; for example, inference

on one-standard-deviation impulse response functions to structural shocks can be invalid, while

one-unit impulse response functions are not, since the latter only depend on �1 and not on �2.

3 Robust conditional inference on �2
We now turn attention to inference on �2 in the absence of Gaussianity. While the result

of Theorem 1 is general and allows � (�2) to be full �2 = vech�, in applied work, the structural

nature of the shocks requires that they are at least mutually uncorrelated. Moreover, whenever the

structural shocks "t are non-Gaussian, one needs to take a stance on both their contemporaneous

linear and nonlinear dependence. In particular, in this case, mutual orthogonality does not rule

out dependence and a stance is needed on what constitutes a non-Gaussian fundamental shock:

independence or orthogonality from other shocks10. In the case of independence, the resulting

asymptotic variance of the volatility parameters is a diagonal matrix with simpler form; however,

the procedure we propose in this section works for both orthogonal and independent shocks and

we leave this choice to the practitioner.

Since the structural shocks are at least orthogonal, we let � (�2) be a diagonal covariance

matrix and �2 = Pvec� (�2) ; where P is an n � n2 selector matrix with [P ]i;(i�1)n+i = 1 for

i = 1; :::; n and zeros elsewhere and �2 contains the diagonal elements �2= [�21; :::; �
2
m]
0 of � (�2) :

�2i = [� (�2)]ii : If the shocks ("t)
n
t=1 were observed, it follows that (e.g. see Petrova (2022)),p

n
�
�̂2 � �2

�
j ("t)nt=1 !d N (0; V�2) as n!1

where V�2 = PD+
m

�
K�vech� (vech�)0

�
D0+
mP

0; K =EFt�1
�
vech ("t"

0
t) (vech ("t"

0
t))

0� ; D+
m is the

Moore-Penrose inverse of the duplication matrix Dm; and hence V�2 is a full matrix with typical

element [V�2 ]ij = EFt�1
�
"2it"

2
jt

�
� �2i�

2
j : If, in addition, the shocks "t are mutually independent,

we have EFt�1
�
"2it"

2
jt

�
= �2i�

2
j for i 6= j and so V�2 simpli�es to a diagonal matrix with elements

[V�2 ]ii = EFt�1 ["4it] � �4i : Bayesian treatment through an informative prior distribution can easily

9Numerical derivatives can be used to obtain an estimator for [C0]22 ; but these are typically of poor quality.
10Lanne et al. (2017) argue that the correct assumption in a non-Gaussian setup is mutual independence.
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be added for �2; this is not pursued here since not much prior information is typically available

for the reduced-form parameters �2 which determine the �size�of the shocks; instead, we proceed

by imposing a �at noninformative prior on �2.

The shocks ("t)
n
t=1 are not observed, but conditional on a draw for �1; a draw from the history

of structural shocks ("̂t)
n
t=1 can be obtained through a disturbance smoother (e.g. Carter and

Kohn (1994) or Durbin and Koopman (2002)). This allows to exploit the conditional large sample

distribution above. To make a draw from it, we need a consistent estimator for V�2 ; for example,h
V̂�2

i
ij
=
1

n

Pn
t=1 "̂

2
it"̂
2
jt �

�
1

n

Pn
t=1 "̂

2
it

��
1

n

Pn
t=1 "̂

2
jt

�
; (11)

which further simpli�es to a diagonal matrix with elementsh
V̂�2

i
ii
=
1

n

Pn
t=1 "̂

4
it �

�
1

n

Pn
t=1 "̂

2
it

�2
(12)

if mutual independence is assumed on the shocks.

On the other hand, given �2; the DSGE model in (2) and (3) is a standard linear state space

with known covariance matrix � (�2), and so a standard Metropolis-Hastings step can be used

to make a draw from the conditional posterior of �1. This conditioning argument gives rise to

the following Metropolis-within-Gibbs algorithm, designed to approximate the joint posterior of

[�01; �
0
2]
0 by recursively making draws from the conditional posteriors of �1 and �2 respectively.

���Algorithm 1���
Step 1. Initialise the algorithm at a starting value �0; for example, the posterior mode obtained

through numerical optimisation can be used: �0 = argmax� p(�jy1:T ):
For i = 1; :::; N sim; iterate between the following steps:

Step 2. (Disturbance Smoother Step) Given �i�11 draw the history of structural shocks

[("̂t)
n
t=1]

i from the state space model (2) and (3), e.g. using Carter and Kohn (1994) or Durbin

and Koopman (2002) algorithms.

Step 3. (Gibbs Step) Conditional on the �tted shocks [("̂t)
n
t=1]

i
; draw �i2 from N

�
0; 1

n
V̂�2

�
with V̂�2 de�ned in (11) (or (12) if mutual independence of the shocks is imposed).

Step 4 (Metropolis Step). Conditional on the draw �i2; draw # from the proposal distribu-

tion N (�i�11 ; c2�); where � is a positive de�nite symmetric matrix11, and c2 is a scaling parameter,

controlling the step size and hence the rejection probability. Compute

r =
exp

�Pn
t=1 `(ytjFt�1; #; �

i
2)
�
p(#)

exp
�Pn

t=1 `(ytjFt�1; �
i�1
1 ; �i2)

�
p(�i�11 )

;

accept the proposal (setting �i1 = #) with probability � = minf1; rg and reject (setting �i1 = �i�11 )

with probability 1� � .

4 Monte Carlo
We design a small Monte Carlo exercise to con�rm the result in Theorem 1 as well as to

study the �nite sample properties of the estimator obtained through the Metropolis-within-Gibbs

11For example, the Hessian evaluated at the posterior mode might be used for �; the theoretical properties of
the Metropolis algorithm are una¤ected by the choice for � as long as it is symmetric p.d. and �xed across draws.
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algorithm of Section 3, designed to correct the posterior of the volatility parameters �2; and assess

how it compares to the standard estimator based on Gaussian likelihood.

We consider a standard small three-equation closed economy New-Keyensian model (e.g. see

Lubik and Schorfheide (2004) or Del Negro and Schorfheide (2013)). The linearised model takes

the form of a Taylor rule, Phillips curve and an Euler equation respectively:
rt = �rrt�1 + (1� �r) ( 1�t +  2 (yt � zt)) + �r"rt (13)

�t = �Et�t+1 + � (yt � zt)

yt = Etyt+1 � � (rt � Et�t+1) + gt
where rt; �t and yt denote the nominal interest rate, in�ation and output respectively (expressed

in deviations from steady states),  1 and  2 are Taylor rule parameters de�ning the policy maker�s

in�ation and output targeting rule, "rt is a policy shock, � is the discount factor � = (1 + 0:01r�)
1=4

where r� is the steady state interest rate, � is the slope of the Phillips curve and � is the intertem-

poral substitution elasticity. The demand and technology exogenous processes, gt and zt; are

assumed to follow AR(1) speci�cations:
gt = �ggt�1 + �g"gt

zt = �zzt�1 + �z"zt
where "gt and "zt are demand and technology structural shocks respectively. The structural para-

meters are given by �1 =
�
��; r�; �;  1;  2; �

�1; �r; �g; �z
�
and the volatility parameters are given

by �2 =
�
�2r; �

2
g; �

2
r

�
:

We simulate arti�cial data from the solution of the model in (13) and generate 5,000 arti�cial

samples for �ve data generating processes (DGPs) with di¤erent shock distributions for the shocks

"rt; "gt and "zt. We estimate the model with: (i) a standard Bayesian random walk Metropolis

algorithm based on Gaussian likelihood (G-DSGE), and (ii) the Metropolis-within-Gibbs algorithm

(MHG-DSGE) proposed in Section 3. Details on the prior distributions, true values as well as

point estimate (bias and RMSE) comparison12 between G-DSGE and MHG-DSGE algorithms can

be found in Section 7.4 of the Appendix. Here, we focus on the coverage rates of the resulting

posterior distributions based on 5,000 posterior draws, measured by the percentage of times the

true parameter value is contained in the 68%, 90%, 95% and 99% credible set respectively.

We begin with Gaussian structural shocks in DGP I:
"it

i:i:d:� N (0; 1) ; i 2 fr; g; zg :
DGP I serves as a benchmark to verify that both procedures yield correct coverage rates even

when there is no distributional misspeci�cation. Table 1 reports the resulting posterior coverage

rates for the G-DSGE and MHG-DSGE estimation procedures respectively for sample sizes n 2
f200; 500; 1000g. Both procedures perform well and the coverage rates get close to the nominal

rates as the sample size increases. Next, in DGP II, we consider standardised t-distributed shocks

with degrees of freedom � = 5:

"it
i:i:d:� 1p

�= (� � 2)
t5; i 2 fr; g; zg :

12Both speci�cations exhibit similar point estimate performance.
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Table 1: Posterior Coverage DGP I

�r �g �a �� r� �  1  2 ��1 �r �g �z
68% 69.3% 83.3% 72.5% 62.8% 65.0% 75.7% 87.1% 87.7% 89.5% 66.9% 73.2% 73.7%

n=200 90% 90.7% 97.7% 92.5% 83.1% 90.1% 94.4% 96.4% 95.4% 99.0% 89.4% 93.4% 93.3%
G-DSGE 95% 95.3% 99.4% 96.2% 91.9% 94.6% 97.6% 98.4% 97.5% 99.7% 94.3% 96.7% 97.1%

99% 98.7% 99.9% 99.3% 96.9% 98.5% 99.6% 99.6% 99.5% 100.0% 98.8% 99.5% 99.7%
68% 62.1% 76.0% 70.3% 63.9% 65.4% 72.4% 76.8% 75.0% 85.5% 60.6% 71.7% 72.6%

n=200 90% 85.3% 94.1% 90.0% 86.9% 88.0% 92.3% 92.9% 90.4% 98.2% 85.4% 92.3% 92.0%
MHG-DSGE 95% 91.3% 97.4% 94.3% 91.2% 93.6% 95.9% 96.1% 94.7% 99.4% 91.6% 96.4% 96.2%

99% 97.5% 99.6% 98.7% 97.4% 98.2% 99.0% 99.1% 98.4% 100.0% 97.8% 99.4% 99.2%
68% 71.4% 78.2% 68.4% 63.6% 64.6% 74.1% 94.2% 95.8% 81.4% 70.8% 70.8% 69.2%

n=500 90% 92.0% 95.7% 91.4% 85.7% 87.0% 93.3% 98.7% 98.7% 95.6% 91.8% 91.3% 90.7%
G-DSGE 95% 96.4% 98.0% 95.5% 91.7% 92.4% 96.7% 99.3% 99.3% 98.1% 95.9% 95.6% 95.6%

99% 99.3% 99.6% 98.8% 96.8% 97.2% 99.1% 99.8% 99.8% 99.5% 99.0% 99.1% 99.1%
68% 68.2% 72.7% 68.3% 63.7% 64.5% 70.7% 91.4% 91.1% 77.3% 68.8% 69.3% 68.9%

n=500 90% 90.6% 92.5% 90.5% 84.8% 84.9% 90.4% 97.2% 96.9% 94.0% 90.1% 91.4% 90.4%
MHG-DSGE 95% 95.0% 96.3% 95.2% 90.9% 91.5% 94.9% 98.3% 97.9% 96.7% 94.5% 95.3% 95.0%

99% 98.8% 99.1% 98.8% 96.4% 96.7% 98.7% 99.1% 99.2% 99.4% 98.7% 98.9% 99.1%
68% 72.3% 71.2% 67.8% 64.5% 66.6% 71.0% 95.1% 96.6% 73.7% 72.2% 68.6% 68.2%

n=1000 90% 92.5% 91.5% 90.0% 86.2% 88.0% 91.3% 99.6% 99.5% 92.1% 92.3% 90.3% 90.3%
G-DSGE 95% 96.3% 95.8% 94.9% 89.0% 91.0% 95.5% 99.7% 99.7% 96.4% 96.5% 95.3% 95.2%

99% 99.4% 99.2% 99.1% 97.6% 97.6% 99.1% 99.9% 99.8% 98.9% 99.4% 99.0% 99.0%
68% 71.1% 67.7% 67.9% 64.9% 66.8% 66.4% 95.0% 96.7% 68.8% 71.0% 68.0% 67.7%

n=1000 90% 92.2% 88.2% 88.9% 87.1% 87.2% 88.3% 99.3% 99.3% 89.8% 92.2% 89.8% 90.3%
MHG-DSGE 95% 96.0% 93.6% 94.4% 92.0% 93.0% 93.2% 99.7% 99.6% 94.1% 96.6% 95.0% 94.9%

99% 99.3% 98.0% 98.6% 97.4% 97.9% 98.8% 99.9% 99.9% 98.4% 99.3% 98.7% 98.7%

Table 2: Posterior Coverage DGP II

�r �g �a �� r� �  1  2 ��1 �r �g �z
68% 50.5% 79.3% 58.6% 63.2% 69.2% 77.3% 85.7% 86.8% 88.9% 66.1% 73.8% 74.5%

n=200 90% 73.6% 95.4% 82.2% 85.5% 90.0% 94.9% 96.0% 95.0% 98.8% 89.1% 93.1% 93.4%
G-DSGE 95% 81.6% 97.7% 88.5% 91.0% 94.3% 97.6% 97.9% 96.9% 99.7% 93.6% 96.8% 96.7%

99% 92.4% 99.6% 95.8% 97.2% 98.4% 99.8% 99.5% 98.7% 99.9% 98.7% 99.6% 99.4%
68% 59.3% 73.1% 69.1% 64.9% 69.2% 74.1% 71.6% 68.2% 82.9% 61.1% 74.1% 75.3%

n=200 90% 80.3% 92.0% 89.8% 86.7% 89.5% 92.8% 90.3% 86.8% 96.9% 85.4% 93.1% 94.2%
MHG-DSGE 95% 87.3% 95.9% 93.9% 91.9% 94.8% 96.0% 94.5% 92.8% 98.8% 91.8% 96.5% 96.9%

99% 94.5% 99.0% 98.1% 97.4% 98.5% 98.9% 99.2% 98.1% 99.8% 97.9% 99.2% 99.3%
68% 49.4% 72.4% 55.5% 63.7% 65.2% 74.8% 93.8% 96.1% 81.4% 70.2% 69.9% 69.4%

n=500 90% 73.4% 92.4% 78.6% 86.4% 87.0% 94.3% 99.1% 98.9% 96.6% 91.5% 91.8% 90.8%
G-DSGE 95% 81.4% 96.0% 85.7% 91.6% 92.9% 97.6% 99.4% 99.3% 98.3% 95.7% 96.2% 95.7%

99% 91.9% 99.2% 94.1% 97.2% 97.8% 99.5% 99.9% 99.7% 99.5% 99.1% 99.2% 99.1%
68% 64.2% 71.5% 68.3% 64.4% 65.9% 73.2% 86.4% 86.4% 77.0% 68.1% 72.2% 72.3%

n=500 90% 85.2% 91.7% 89.6% 86.2% 86.9% 93.1% 96.2% 95.1% 93.2% 90.3% 92.5% 92.3%
MHG-DSGE 95% 90.9% 95.9% 94.2% 91.8% 92.3% 96.8% 97.7% 97.2% 96.4% 95.2% 96.8% 96.3%

99% 96.5% 98.8% 98.1% 97.0% 97.3% 99.1% 99.1% 98.9% 99.1% 98.7% 99.6% 99.3%
68% 52.0% 67.6% 53.1% 64.7% 65.5% 69.8% 94.9% 96.0% 71.6% 71.4% 69.3% 69.3%

n=1000 90% 76.6% 88.4% 76.5% 83.3% 88.5% 91.0% 99.7% 99.6% 90.3% 92.0% 90.3% 90.7%
G-DSGE 95% 83.8% 93.2% 84.5% 89.8% 95.3% 94.9% 99.9% 99.9% 94.7% 96.2% 94.8% 95.1%

99% 92.6% 98.0% 93.6% 96.4% 97.4% 98.7% 100.0% 99.9% 98.0% 99.4% 99.2% 99.0%
68% 69.0% 69.3% 69.9% 65.7% 67.0% 69.3% 93.9% 95.2% 70.0% 74.3% 69.0% 72.0%

n=1000 90% 88.1% 89.7% 90.3% 87.5% 87.6% 90.6% 98.5% 98.2% 88.9% 93.6% 92.4% 92.0%
MHG-DSGE 95% 93.1% 94.4% 95.0% 93.2% 90.4% 95.0% 99.1% 99.0% 93.9% 96.7% 96.1% 96.5%

99% 98.3% 98.5% 98.4% 97.2% 96.8% 98.6% 99.7% 99.6% 98.2% 99.1% 99.1% 99.3%

In Table 2, we report the resulting posterior coverage rates for the G-DSGE and MHG-DSGE

estimation procedures respectively for di¤erent sample sizes. From Table 2, it is clear that the

coverage rates of the standard G-DSGE procedure for the structural parameters �1 are not distorted

14



by the distributional misspeci�cation, as implied by Theorem 1. Moreover, it is evident that the

associated coverage rates for the volatility parameters �2 of the G-DSGE procedure are only slightly

distorted but crucially do not improve with the sample size, as expected. On the other hand, the

proposed procedure MHG-DSGE, based on a consistent estimator for the sample kurtosis of the

structural shocks and designed to provide valid inference on �2, delivers satisfactory coverage for

�2; as well as for the structural parameters �1:

In DGP III, we consider a mixture distribution between Gaussian and t-distribution for the shocks:

~"it
i:i:d:�

8<: � it w.p. � , � it
i:i:d:� N (�1; 1) ; �1 = 1; � = 0:95

wit w.p. (1� �) ; wit
i:i:d:� �2 +

1p
�=(��2)

t5; � = 5; �2 = �20
i 2 fr; g; zg ;

and "it are standardised to have unit variance: "it = 1p
vi
~"it where

p
vi � 2:17: We report the

associated posterior coverage rates for DGP III in Table 3. Once again, it is clear that the

coverage rates for the volatility parameters �2 of the standard G-DSGE procedure are distorted

(in this DGP more severely since the departure from Gaussianity is more serious); for example the

volatility of the monetary policy shock �r is contained around 33% of the time in the 68% credible

set and this does not improve even for n = 1000. On the other hand, the proposed procedure

MHG-DSGE delivers good coverage for �2 converging to the nominal rates as the sample increases.

Table 3: Posterior Coverage DGP III

�r �g �a �� r� �  1  2 ��1 �r �g �z
68% 33.4% 62.0% 38.3% 63.5% 67.7% 74.4% 84.7% 86.7% 85.4% 65.9% 74.6% 75.4%

n=200 90% 52.3% 84.9% 60.1% 84.1% 89.5% 93.3% 95.7% 95.5% 97.3% 88.3% 93.7% 94.4%
G-DSGE 95% 59.9% 91.2% 68.7% 90.4% 94.7% 96.7% 97.7% 97.1% 98.9% 93.6% 97.2% 97.2%

99% 74.8% 97.3% 83.4% 96.3% 98.3% 99.3% 99.2% 98.9% 99.7% 98.8% 99.6% 99.3%
68% 62.5% 61.1% 68.6% 64.6% 67.8% 71.4% 48.1% 40.5% 65.3% 55.8% 79.8% 78.7%

n=200 90% 83.3% 83.3% 89.1% 86.5% 89.3% 91.3% 80.3% 74.0% 88.8% 82.9% 95.8% 94.0%
MHG-DSGE 95% 88.9% 88.9% 94.1% 91.5% 93.8% 95.6% 88.8% 84.6% 93.8% 91.1% 98.1% 96.7%

99% 94.2% 95.2% 97.4% 97.3% 97.8% 98.7% 96.4% 94.9% 98.3% 98.0% 99.4% 99.2%
68% 33.8% 63.5% 38.5% 63.8% 65.0% 73.1% 93.8% 95.6% 78.5% 70.5% 72.6% 72.6%

n=500 90% 52.1% 85.0% 59.8% 85.1% 87.2% 93.5% 98.5% 98.6% 95.6% 91.8% 92.6% 93.7%
G-DSGE 95% 59.3% 90.9% 67.9% 91.0% 92.9% 96.8% 99.3% 99.2% 98.1% 96.1% 96.4% 96.9%

99% 74.3% 97.3% 82.3% 97.1% 97.9% 99.5% 99.6% 99.5% 99.4% 99.1% 99.1% 99.3%
68% 63.6% 65.3% 68.7% 66.4% 66.7% 71.5% 71.4% 68.0% 66.6% 67.0% 81.0% 80.9%

n=500 90% 84.4% 86.6% 90.8% 87.3% 88.2% 91.2% 89.4% 87.4% 88.6% 89.1% 96.3% 95.8%
MHG-DSGE 95% 90.6% 91.7% 95.2% 92.3% 93.8% 95.4% 94.3% 93.0% 93.4% 94.3% 98.5% 98.3%

99% 96.6% 97.3% 98.6% 97.1% 97.9% 98.7% 98.2% 97.5% 98.4% 98.3% 99.6% 99.6%
68% 33.6% 63.0% 38.9% 64.4% 66.3% 72.5% 94.6% 95.8% 75.5% 72.7% 71.3% 69.2%

n=1000 90% 55.6% 85.0% 58.6% 86.3% 87.4% 92.6% 98.7% 98.8% 93.0% 92.3% 91.7% 90.9%
G-DSGE 95% 63.9% 91.0% 68.0% 92.6% 93.8% 96.4% 99.3% 99.4% 96.5% 96.3% 95.8% 95.5%

99% 77.3% 96.6% 82.2% 97.1% 98.0% 99.2% 99.7% 99.6% 99.1% 99.4% 99.3% 99.0%
68% 62.8% 68.2% 70.7% 69.0% 69.5% 75.2% 71.4% 68.9% 72.3% 67.4% 82.1% 81.1%

n=1000 90% 85.9% 89.4% 91.6% 89.4% 89.6% 93.0% 88.4% 87.2% 91.3% 90.7% 97.1% 96.9%
MHG-DSGE 95% 91.7% 94.1% 95.6% 94.0% 93.8% 96.3% 93.1% 92.8% 95.0% 95.8% 99.0% 98.8%

99% 97.6% 98.3% 99.0% 97.9% 98.0% 99.1% 98.7% 97.5% 98.3% 99.0% 99.8% 99.9%

In DGP IV, we consider another mixture distribution between Gaussian and inverse-Gaussian

distributions for the shocks of the form:

~"it
i:i:d:�

(
� it w.p. � , � it

i:i:d:� N (�1; 1) ; �1 = 1; � = 0:71

wit w.p. (1� �) ; wit
i:i:d:� IG (�2; 3) ; �1 = �2:5

i 2 fr; g; zg
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and "it are standardised: "it =
1p
vi
~"it where

p
vi � 4:58: We report the associated posterior

coverage rates for DGP IV in Table 4 below. The results reported in Table 4 con�rm the conclusions

from the other DGPs; namely, (i) the standard Gaussian G-DSGE model works well and delivers

valid coverage for the structural parameters �1 supporting the main result of Theorem 1; (ii)

Gaussian inference is distorted for the volatility parameters �2 and distortions do not disappear

with the sample size increasing, and (iii) the proposed Metropolis-within-Gibbs algorithm corrects

the coverage of the credible sets for �2 while delivering satisfactory performance for �1:

Table 4: Posterior Coverage DGP IV

�r �g �a �� r� �  1  2 ��1 �r �g �z
68% 39.9% 69.0% 44.6% 65.0% 68.0% 76.3% 86.0% 86.7% 89.2% 65.2% 74.4% 74.5%

n=200 90% 61.1% 90.5% 69.1% 86.2% 89.7% 94.6% 96.2% 95.6% 98.5% 88.6% 92.9% 93.9%
G-DSGE 95% 68.4% 95.2% 77.2% 91.4% 94.1% 98.0% 98.0% 97.2% 99.5% 93.5% 96.8% 97.2%

99% 82.5% 99.0% 89.8% 96.9% 97.9% 99.5% 99.1% 99.0% 100.0% 98.7% 99.5% 99.4%
68% 57.9% 69.2% 65.1% 64.4% 67.4% 72.2% 62.6% 57.7% 79.3% 58.1% 76.0% 76.8%

n=200 90% 76.5% 87.9% 86.3% 86.4% 89.8% 92.2% 87.0% 83.3% 95.3% 84.3% 94.1% 94.9%
MHG-DSGE 95% 82.1% 92.7% 91.2% 91.7% 93.6% 96.1% 93.1% 90.3% 97.6% 91.3% 97.4% 97.5%

99% 88.9% 97.3% 96.3% 97.0% 98.3% 99.1% 98.2% 97.2% 99.6% 97.4% 99.7% 99.4%
68% 39.6% 68.3% 43.5% 61.9% 63.9% 74.1% 93.6% 95.8% 82.2% 70.1% 70.0% 70.9%

n=500 90% 61.1% 89.0% 67.6% 85.3% 86.1% 93.6% 98.8% 98.6% 96.3% 91.6% 91.4% 91.6%
G-DSGE 95% 68.7% 93.8% 76.4% 91.4% 91.6% 97.1% 99.4% 99.2% 98.2% 96.0% 96.3% 96.1%

99% 82.7% 98.6% 88.1% 97.3% 97.2% 99.1% 99.8% 99.8% 99.4% 99.1% 99.3% 99.1%
68% 63.2% 70.3% 67.8% 65.3% 67.0% 72.3% 80.3% 78.0% 73.3% 68.3% 75.3% 76.2%

n=500 90% 82.6% 90.3% 87.9% 86.3% 88.3% 91.8% 93.6% 92.2% 91.8% 90.0% 94.5% 94.1%
MHG-DSGE 95% 88.0% 94.3% 91.6% 91.4% 93.1% 95.8% 96.1% 95.1% 95.3% 94.5% 97.6% 97.3%

99% 94.2% 98.5% 96.8% 97.3% 97.8% 98.9% 98.8% 98.4% 98.4% 98.5% 99.6% 99.3%
68% 39.4% 66.6% 43.6% 64.5% 66.2% 72.5% 94.9% 96.5% 75.3% 71.9% 69.2% 70.0%

n=1000 90% 61.5% 87.3% 66.2% 86.9% 87.5% 92.8% 98.9% 98.8% 93.9% 92.4% 90.9% 91.3%
G-DSGE 95% 70.4% 93.5% 74.6% 91.3% 92.0% 96.8% 99.3% 99.2% 97.0% 96.6% 95.9% 95.9%

99% 83.8% 98.1% 88.3% 97.2% 97.7% 99.3% 99.9% 99.7% 99.2% 99.4% 99.5% 99.1%
68% 63.9% 71.1% 69.4% 68.3% 67.2% 73.9% 79.0% 77.9% 72.5% 69.6% 77.9% 79.4%

n=1000 90% 83.3% 90.4% 90.7% 89.3% 89.5% 92.7% 92.1% 91.7% 90.9% 90.3% 95.8% 96.2%
MHG-DSGE 95% 89.0% 95.2% 94.8% 94.3% 93.9% 96.6% 95.6% 95.0% 95.1% 95.3% 98.3% 98.4%

99% 95.6% 98.4% 98.0% 98.1% 98.1% 99.2% 98.4% 97.8% 98.5% 98.9% 99.8% 99.8%

Figure 1 displays the shock distributions for DGP III and IV respectively, which clearly exhibit

very non-Gaussian features. Finally, in DGP V, we consider standardised t-distributed shocks

with degrees of freedom � = 3:

"it
i:i:d:� 1p

�= (� � 2)
t3; i 2 fr; g; zg :

The resulting shocks are fat-tailed with in�nite skewness, which intentionally violates Assumptions

5b and 5c to investigate if Gaussian inference on the structural parameters �1 is a¤ected.

In Table 5, we report the resulting posterior coverage rates for the G-DSGE for di¤erent

sample sizes (the MHG-DSGE procedure is infeasible since it uses the sample kurtosis which in

this case blows up since the corresponding population moment does not exist). From Table 5,

it is clear that fat-tailed shocks do not distort the validity of Gaussian inference on the struc-

tural parameters �1; whose coverage is converging to the nominal rate, as the sample increases.
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Figure 1: Error Distributions for DGP III and IV

Table 5: Posterior Coverage DGP V

�r �g �a �� r� �  1  2 ��1 �r �g �z
68% 27.7% 56.1% 32.7% 57.2% 59.3% 68.1% 91.2% 94.6% 72.9% 67.8% 70.2% 72.9%

n=200 90% 46.0% 80.4% 54.9% 81.0% 81.9% 90.0% 99.1% 99.3% 90.0% 90.9% 91.0% 93.8%
G-DSGE 95% 55.4% 87.6% 64.2% 87.6% 88.6% 93.9% 99.6% 99.7% 94.1% 95.2% 94.8% 96.8%

99% 73.1% 95.4% 80.4% 94.9% 96.0% 98.3% 99.9% 99.8% 97.9% 98.8% 98.7% 99.3%
68% 23.0% 55.2% 27.7% 59.4% 60.4% 68.9% 92.5% 95.4% 71.8% 69.8% 71.2% 70.1%

n=500 90% 37.8% 78.5% 46.7% 82.4% 83.7% 91.0% 99.2% 99.4% 90.7% 91.1% 91.9% 91.3%
G-DSGE 95% 46.2% 86.2% 56.7% 89.1% 89.6% 95.0% 99.7% 99.7% 94.8% 95.5% 95.6% 95.2%

99% 64.5% 95.4% 75.3% 96.1% 96.4% 98.8% 100.0% 99.9% 98.3% 99.1% 99.2% 99.0%
68% 22.1% 54.0% 24.4% 61.5% 62.8% 69.1% 91.4% 95.0% 70.9% 69.5% 69.3% 69.3%

n=1000 90% 36.3% 76.6% 41.3% 83.8% 83.9% 90.2% 97.3% 96.2% 90.5% 92.6% 90.9% 91.5%
G-DSGE 95% 43.7% 83.9% 50.4% 89.8% 90.5% 94.9% 99.7% 99.6% 94.3% 96.5% 95.6% 95.4%

99% 60.5% 94.3% 67.7% 96.3% 96.0% 98.5% 99.9% 99.9% 98.0% 99.3% 99.1% 99.3%

5 Non-Gaussian shocks in �nancial friction DSGE model
In this section, we estimate a Smets and Wouters (2007) model with an added �nancial sector

as in Bernanke, Gertler and Gilchrist (1999). The choice of model is motivated by the possible

non-Gaussian features of the observables and we make use of the model to highlight the large

di¤erences in the posterior distributions for the volatility parameters if the MHG algorithm from

Section 3 is used, which is robust to non-Gaussianity of the shocks.

The �nancial sector in the model consists of entrepreneurs, subject to aggregate and idiosyn-

cratic shocks, who borrow funds from banks at a premium. The �nancial friction is designed to

�accelerate�the impact of negative shocks increasing the default risk during recessions. The model

follows the �nancial friction speci�cation of Del Negro and Schorfheide (2013), with the only dif-

ference that we do not impose stochastic trend on productivity and estimate the autoregressive

parameter on the productivity process instead, as in Smets and Wouters (2007). The complete

log-linearised speci�cation of the model, the measurement equations, prior distributions and data

description can be found in Section 7.5 of the Appendix.

In Figure 2, we display the kernel estimated density of the standardised �tted shocks on the

US data for the sample 1962Q1-2022Q4 and compare that to the standard normal density, as a

simple diagnostic on the degree of non-Gaussianity of the �tted shocks. It is clear from the �gure

that some shocks (particularly TFP, monetary policy, risk premium and price shocks) display
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very non-Gaussian features over the sample with kurtosis much larger than the kurtosis of the

standard normal. Consequently, we expect that imposing Gaussianity will have a considerable

e¤ect on Bayesian inference on the volatility of shocks in the model and may deliver posteriors

with invalid coverage, as the theoretical results established in paper suggest.

We estimate the model on the US sample, using the random-walk Metropolis algorithm with

Gaussian likelihood, as well as the Metropolis-within-Gibbs algorithm described in Section 3,

designed to provide valid inference on the volatility of shocks, in the presence of shocks displaying

non-Gaussian features. In particular, we estimate two speci�cations for our MHG algorithm: (i)

imposing mutual independence on the shocks, and (ii) imposing mutual orthogonality but allowing

for nonlinear dependence. The estimated posteriors for the volatilities of all eight shocks are

displayed in Figure 3 below. The Appendix contains the posterior distributions for the structural

parameters of the model for the di¤erent speci�cations13.

Figure 2: Density of �tted Shocks

As anticipated, allowing for the possibility of non-Gaussian shocks delivers very di¤erent pos-

terior distributions for the volatility parameters in Figure 3 and this can have serious implications

when computing credible sets for quantities which depend on the volatility of shocks; for example,

one standard deviation impulse responses, routinely reported in the literature, will have invalid

credible sets if Gaussianity was incorrectly imposed. Another conclusion from Figure 3 is that

13As illustrated in the Monte Carlo exercise, any di¤erences between the Gaussian and non-Gaussian speci�cations
for �1 are due to small samples and are expected vanish as the sample size increases.
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allowing the structural shocks to be mutually dependent can lead to slightly di¤erent posteriors for

the volatility. Under dependence, the correct asymptotic sampling distribution for �2 (conditional

on �1) has a non-diagonal covariance matrix as established in Section 3. Di¤erences relative to

the case when independence is imposed can arise: (i) due to small sample noise arising from the

estimation of the additional m (m� 1) =2 o¤-diagonal elements (28 in the context of the model
considered), or (ii) whenever the true o¤-diagonal elements involving higher moment cross terms

are not zero. In other words, the two speci�cations can give rise to di¤erent posterior distribu-

tions whenever some of the estimated volatility parameters �2 co-vary, which happens when the

underlying structural shocks exhibit some nonlinear dependence.

Figure 3: Posterior distributions for the shocks�volatilities

6 Conclusion
While non-Gaussianity is an undeniable feature of many macroeconomic and �nancial time

series, incorrectly imposing Gaussian assumptions on the structural shocks of a linear DSGE

model is shown to have no asymptotic e¤ect on classical and Bayesian inference on the structural

parameters of the model. Consequently, the resulting MLE con�dence intervals and Bayesian

credible sets for the deep parameters have correct asymptotic coverage and no �sandwich-form�

corrections for the posterior variance are required. This surprising result is due to a cancellation in

the asymptotic variance of the structural parameters leading to a generalised information equality

for the corresponding block. The underlying reason for the cancellation is the certainty equivalence

property of the linear rational expectation model, which ensures that the conditional �rst moment

of the model�s variables does not depend on the second moment of the structural shocks.
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The main positive implication of the result is that DSGE-based inference is surprisingly robust:

imposing a Gaussianity assumption on the structural shocks, which is convenient since it permits

the use of the Kalman �lter for likelihood evaluation, has no e¤ect on the validity of classical and

Bayesian inference for the structural parameters even when the true underlying structural shocks

are non-Gaussian. On a more cautionary note, the result implies that linearisation of the DSGE

model around a deterministic steady state not only washes away any uncertainty e¤ects from

the volatility of the shocks on the solutions matrices, but also any e¤ects from the non-Gaussian

features of the shocks on econometric procedures for the structural parameters.
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7 Appendix
This Appendix contains: (i) two auxiliary results (Lemmata 1 and 2) and their proofs in Section

7.2, (ii) the proof of Theorem 1 in Section 7.3, (iii) details on the Monte Carlo design and some
additional simulation results in Section 7.4, and (vi) addition details and results on the empirical
application in Section 7.5 below.

7.1 Notation
We make use of the following notation throughout. For an m�n matrix-variate function X (�)

of �; for notational convenience, we suppress dependence on � and write X instead of X (�) : We
denote by _X the k1 �mn Jacobian matrix of �rst derivatives with respect to �1 : _X = @(vecX)0

@�1
;

and for quantities that depend on both �1 and �2; we use _X1 and _X2 to denote the k1 �mn and
k2�mn Jacobian matrices of derivatives with respect to �1 and �2 respectively. If X is symmetric,
we denote the k1 � n (n+ 1) =2 Jacobian of �rst derivatives by _X = (@vechX)0

@�1
instead, where

vech (:) is the half-vec operator, satisfying vecX = DnvechX; where Dn is the n2 � n (n+ 1) =2
duplication matrix with D+

n denoting its Moore Penrose inverse, such that D
+
nDn = In(n+1)=2 and

vechX = D+
n vecX (see Abadir and Magnus (2010)).

7.2 Auxiliary Results
Lemma 1. The score vector st (�) in (10) satis�es n�1=2

Pn
t=1 st

�
�0
�
!d N (0;B0), with

B0 =
�

1
4
_
1�Ku� _
01 + 1

2
_
1�L+

1
2
L0� _
01 + V 1

4
_
1�Ku� _
02 + 1

2
L0� _
02

1
4
_
2�Ku� _
01 + 1

2
_
2�L

1
4
_
2�Ku� _
02

�
(A.1)

where L = S 0u
�1 _C 0, V = _C
�1 _C 0 +
.

HF (VX 
 
�1) (
.

HF )0 with
.

HF = @vec(H(�1)F (�1))0

@�1
, VX

de�ned in (8), � = D0
r (


�1 
 
�1)Dr where Dr denotes the r2 � r (r + 1) =2 duplication ma-
trix, Su and Ku denote the multivariate skewness and kurtosis of ut respectively given by Su =
EFt�1

�
ut (vech [utu

0
t])
0	and Ku = EFt�1

�
vech (utu

0
t) (vech (utu

0
t))

0� ; and all quantities in (A.1)
are evaluated at � = �0.

Lemma 2. The Hessian matrix of second derivatives Ht (�) =
@2`(yt;�jFt�1)

@�@�0 of ` (yt; �jFt�1) satis-
�es

1

n

Pn
t=1

�
Ht (�

�
n)� EFt�1Ht

�
�0
��
!p 0 as n!1 (A.2)

for all ��n satisfying


��n � �0



 � 


�̂n � �0



.

Proof of Lemma 1. The Gaussian (quasi) conditional log-likelihood is

` (yt; �jFt�1) = �
r

2
log (2�)� 1

2
log j
j � 1

2
tr
�1utu

0
t

with ut (�1;xt�1) = yt � �t: To obtain the conditional quasi-score vector st (�) =
@`(yt;�jFt�1)

@�
, �rst

compute the �rst di¤erential of `t
d`t = �1

2
tr
��

�1

�
d

�
+
1

2
tr
�

�1 (d
)
�1utu

0
t

�
+ tr

�

�1utd�

0
t

�
=

1

2
(dvech
)0D0

r

�

�1 
 
�1

�
Drvech (utu

0
t � 
) + d�0t


�1ut

where we have used the identities tr (AB) = (vecA0)0 vecB, vec
 = Drvech
 and vec (ABC) =
(C 0 
 A) vecB: Taking derivatives with respect to �1 and �2; we obtain the expression for condi-
tional (quasi) score vector as in (10):

st (�) =

"
@`(yt;�jFt�1)

@�1
@`(yt;�jFt�1)

@�2

#
=

�
1
2
_
1D

0
r (


�1 
 
�1)Drzt + _�t

�1ut

1
2
_
2D

0
r (


�1 
 
�1)Drzt

�
; (A.3)
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where zt (�1; �2;xt�1) = vech (utu
0
t � 
) : At � = �0, ut

�
�0
�
= H

�
�01
�
G
�
�01
�
"t and zt

�
�0
�
=

vech
�
ut
�
�0
�
u0t
�
�0
�
� 


�
�0
��
are Ft-martingale di¤erence sequences since under Assumptions 1-

2, the �rst two conditional moments of the observables are correctly speci�ed; the functional form
for the score vector in (A.3) then implies that st

�
�0
�
is an Ft-martingale di¤erence sequence at

�0: EFt�1
�
st
�
�0
��
= 0. This, together with global identi�cation imposed by Assumption 3 and

uniform integrability (UI) of
�

st ��0�

�t�1 (implied by square UI established below) are su¢ cient

for the consistency of QML estimator: �̂n !p �
0.

We now show that the sequences
�

ut ��0�

2�

t�1
and

�

zt ��0�

2�
t�1
are uniformly integrable.

Firstly, since


H ��01�

 

G ��01�

 is a non-random constant, UI of �

ut ��0�

2�

t�1
follows from the

UI of
�
k"tk2

�
t�1. Since

zt ��0�

2 �

�


ut ��0�ut ��0�0


+ 


 ��0�

�2 � 2

ut ��0�

4 + 2


 ��0�

2
� 2



H ��01�

4 

G ��01�

4 k"tk4 + 2


 ��0�

2 ;
the UI of

�

zt ��0�

2�
t�1
follows from that of

�
k"tk4

�
t�1. In view of (A.3), the UI of the sequences�

ut ��0�

2�

t�1
and

�

zt ��0�

2�
t�1

implies the UI of the sequence
�

st ��0�

2�

t�1
.

UI of
�

st ��0�

2�

t�1
may be used to establish the Lindeberg condition for the Ft-martingale

di¤erence array �nt = n�1=2st
�
�0
�
, namely Ln (�) =

Pn
t=1 E

�
k�ntk

2 1 fk�ntk > �g
�
! 0 for any � >

0. Substituting �nt = n�1=2st
�
�0
�
, we obtain Ln (�) � max1�t�n E

�

st ��0�

2 1f

st ��0�

2 > n�g
�

is o (1) by uniform integrability of
�

st ��0�

2�

t�1
. Hence, as long as

B0 = plim
n!1

1

n

Pn
t=1 EFt�1

h
st
�
�0
�
st
�
�0
�0i

(A.4)

exists and is positive de�nite, a martingale CLT on �nt = n�1=2st
�
�0
�
(e.g. Corollary 3.1 of Hall

and Heyde (1980)) implies that n�1=2
Pn

t=1 st
�
�0
�
!d N (0;B0). In what follows, we show that

B0 in (A.4) exists and coincides with the expression for B0 in (A.1).
We start by computing the second conditional moments of zt and ut at �

0:
EFt�1 [ut

�
�0
�
ut
�
�0
�0
] = EFt�1

�
yt � �0t

� �
yt � �0t

�0
=
�
HGEFt�1"t"0tG0H 0�

�=�0
= [
]�=�0

EFt�1 [zt
�
�0
�
zt
�
�0
�0
] = EFt�1 [vech (utu0t � 
) (vech (utu0t � 
))

0
]�=�0 =:

�
Ku � vech
 (vech
)0

�
�=�0

EFt�1 [zt
�
�0
�
ut
�
�0
�0
] =

�
EFt�1 (vechutu0t)u0t � vech
EFt�1u0t

�
�=�0

=: S 0u
since EFt�1ut = 0 at �

0; and Su and Ku denote the multivariate skewness and kurtosis of ut and
are related to the skewness and kurtosis of the structural shocks S" and K" in the following way:

Su = EFt�1
�
ut (vech [utu

0
t])
0	
= EFt�1

h
HG"t

�
D+
r (HG
HG) vec ("t"

0
t)
�0i

=
h
HGS"

�
D

0

m (HG
HG)0D+0

r

�i
(A.5)

Ku = EFt�1
�
vech (utu

0
t) (vech (utu

0
t))

0�
=
�
D+
r (HG
HG)DmK"D0

m (HG
HG)0D+0
r

�
where S" = EFt�1"t (vech ["t"0t])

0 and K" = EFt�1vech ("t"0t) (vech ("t"0t))
0 are the conditional third

and fourth moment of the structural shocks "t de�ned in Assumption 5b. Next, we compute the
conditional variance B0 of the score vector at �0 in (A.4). We de�ne � = D0

r (

�1 
 
�1)Dr and
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C1 =
1
2
_
1�; C2;t = _�t


�1 and C3 = 1
2
_
2�. We have

[B0]11 = plim
n!1

1

n

Pn
t=1

�
C1EFt�1ztz0tC 01 + C1EFt�1ztu0tC 02;t + C2;tEFt�1utz0tC 01 + C2;tEFt�1utu0tC 02;t
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1
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0
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n!1

1

n
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t=1C2;tSuC 01 + plim
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1

n
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t=1C2;t
C

0
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Since _�t =
@�(�1;xt�1)

0

@�1
= _C +

.
HF (xt�1 
 Ir) where

.
HF = @vec(H(�1)F (�1))0

@�1
and _C = @C(�1)

0

@�1
; _�t is

Ft�1-measurable and we have 1
n

Pn
t=1C2;t =

1
n

Pn
t=1 _�t


�1 !p
_C
�1 since 1

n

Pn
t=1 xt�1 !p 0 by

Assumption 4: Moreover,
1

n

Pn
t=1 _�t _�

0
t = _C _C 0+

.
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�
1

n

Pn
t=1 xt�1x

0
t�1 
 Ir

�
(
.

HF )0+op (1)!p
_C _C 0+

.
HF (VX 
 Ir) (

.
HF )0 =: V�

where VX = E
�
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0
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�
satisfying vec (VX) =

�
Is2 � F

�
�0
�
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�
�0
���1 �

G
�
�0
�

G

�
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vec�

�
�0
�
:
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C

0
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1

n
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t=1 _�t


�1 _�0t =
_C
�1 _C 0 +

� .
HF

�
1

n

Pn
t=1 xt�1x

0
t�1 
 
�1

�
(
.

HF )0
�
+ op (1)

!p
_C
�1 _C 0 +

.
HF

�
VX 
 
�1

�
(
.

HF )0 =: V:

De�ning L = S 0u
�1 _C 0; we obtain the 11 block of (A.4):
[B0]11 = C1KuC 01 + C1L+ L0C 01 + V:

Likewise, the 12 block of (A.4) is given by

[B0]12 = plim
n!1

1

n

Pn
t=1

�
C1EFt�1ztz0tC 03 + C2;tEFt�1utz0tC 03

�
= C1KuC 03 +

�
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n!1

1

n

Pn
t=1C2;t

�
SuC 03 = C1KuC 03 + L0C 03

and, hence, [B0]21 = C3KuC 01 + C3L: Finally, the 22 block of (A.4) is given by

[B0]22 = plim
n!1

1

n

Pn
t=1C3EFt�1ztz

0
tC

0
3 = C3KuC 03:

Letting B0 =
n
[B0]ij ; i; j 2 f1; 2g

o
with blocks given by the above expressions establishes that

the probability limit in (A.4) exists and is equal to the expression for B0 in (A.1).
It remains to show that B0 is positive de�nite. It is easy to see that B220 := _
2�Ku� _
02 > 0.

To see this, recall that _
2 =
@(vech
)0

@�2
= D0

m (HG
HG)0D+
r since

@(vech�)0

@�2
= Ik2 as �2 = vech�;

and so rk( _
2) = k2 since rk (HG
HG) = r2 since rk (HG) = r by Assumption 7 and hence
rk _
2 = r (r + 1) =2 = rk (D+

r ) since r � m:
Since B220 > 0; B0 will be positive de�nite if and only if the Schur complement B110 j B220 > 0:

B110
��B220 = B110 � B120 �B220 ��1 B210 = _
1�Ku� _
01=4 + _
1�L=2 + L

0� _
01=2 + V

�( _
1�Ku� _
02=2 + L0� _
02)
�
_
2�Ku� _
02

��1
( _
2�Ku� _
01=2 + _
2�L)

= V � L0K�1u L = _C
�1
�

� SuK�1u S 0u

�

�1 _C 0 +

.
HF

�
VX 
 
�1

�
(
.

HF )0:

Both terms above are matrix quadratic with (
� SuK�1u S 0u) > 0 (by p.d. of V
��
u0t; vech (utu

0
t)
0�0�)

and (VX 
 
�1) � 0 and hence both are p.s.d. It su¢ ce to show that the second term14 is p.d.
The second term is a quadratic form, with rk (VX 
 
�1) = mr since rk (VX) = m < dim (xt)

due to G being in general not-square full column rank. We have that rk(
.

HF ) = k1 and hence

rk
.

(HF (VX 
 
�1) (
.

HF )0) = k1 since k1 < mr by Assumption 7. It follows that B0 is p.d.

14The �rst can be rank-de�cient: it contains _C = @C0

@�1
which in a typical model containing more structural

parameters than observables k1 > r will have rank r:
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Proof of Lemma 2. The second di¤erential of `t (�) takes the form d2`t (�) =

�d�0t
�1d�t �
1

2
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�1 (d
)
�1d
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2
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�

�1

�
Zt
�

+
�
d�0td

�

�1

��
ut +

1

2
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�1�ut: (A.6)

Recall that, by (6), for k 2 f0; 1; 2g
dk�t (�1;xt�1) = dkC (�1) + dk [H (�1)F (�1)]xt�1 (A.7)

with the convention d0ft = ft. The functions C; H and F are continuously di¤erentiable over� and
twice continuously di¤erentiable with Lipschitz continuous second derivatives in a neighbourhood
N
�
�0; �

�
=
�
� 2 � :



� � �0


 < �

	
for some � > 0: For each �1 2 N�

�
�01
�
,
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�
�01
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�
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�
�01
�
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�
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�
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�
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and, hence,
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�
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�
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Since the functions dkC, dkF and dkH are Lipschitz continuous on N�

�
�01
�
for k 2 f0; 1; 2g ; we

conclude that there exists c 2 (0;1) such that

dk�t (�1)� dk�t
�
�01
�

 � c



�1 � �01


 (1 + kxt�1k) ; k 2 f0; 1; 2g (A.8)

for all �1 2 N�

�
�01
�
. Similarly, since 
 (�1; �2) = H (�1)G (�1) � (�2)G (�1)

0H (�1)
0 and �nite

products of bounded Lipschitz continuous functions are Lipschitz continuous, Assumption 6 on
H, G implies that dk
, 
�1 and d
�1 for k 2 f0; 1; 2g are Lipschitz continuous on N�

�
�01
�
. Also,
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�
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by (A.8) and 
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Since ��n 2 N�

�
�0
�
for all but �nitely many n, applying the Lipschitz continuity properties in (A.8),

(A.9), (A.10) and the Lipschitz continuity of dk
, 
�1 and d
�1 to the expression for d2`t (�) in
(A.6), we obtain that 1
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for k 2 f1; 2g. Since
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!p 0,
1
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��d2`t (��n)� d2`t
�
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���!p 0 (A.12)
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follows by showing that each of the sample means in (A.11) is Op (1). For the �rst, (A.10) gives
1
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n)k �

1

n

Pn
t=1



Zt ��0�
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which is O (1) ; where the second line uses CS inequality and the third uses the functional form of
(6) and its derivatives which implies that



dk�t (��n)

L2 � C kxtkL2 for all � 2 N�

�
�0
�
. The last

inequality for k = 1 shows that the second sample mean in (A.11) is Op (1), showing (A.12).
Further, UI of (
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2)t�1 and (kxtk2)t�1 (the �rst two proven in Lemma
1 and the last implied by the short memory linear process representation of xt with innovations "t
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Combining (A.12) and (A.13) implies that
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. The approximation (A.2) of the Hessian sequence

(Ht

�
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�
)t�1 follows from (A.14) and the identi�cation theorem between the second di¤erential

and the Hessian (Theorem 7 in Magnus and Neudecker (2007)).

7.3 Proof of Theorem 1
The QML estimator �̂n solves 1
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where V and � in (A.16)) are de�ned in Lemma 1. Using the fact that EFt�1zt
�
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�
= 0 and
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= 0; we obtain 1

n

Pn
t=1 EFt�1d2`t

�
�0
�

=
1

n

Pn
t=1 EFt�1

�
1

2
tr
�

�1 (d
)
�1dZt

�
+ d�0t


�1dut

�
= �1

2
(dvech
)0�dvech
� 1

n

Pn
t=1 EFt�1

�
d�0t


�1d�t
�

where � = D0
r (


�1 
 
�1)Dr and all terms are evaluated at �
0: Hence, A0 is given by (A.16)
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This completes the proof of (A.16). We �rst show that A0 is p.d. under the maintained Assump-
tions and then compute its inverse. We have that A220 > 0: Therefore, A0 will be positive de�nite if
and only if the Schur complement A110 j A220 is p.d. We have that A110 j A220 = A110 �A120 (A220 )
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as we already established that V > 0 at �0 in Lemma 1. Computing the inverse of A0, we have
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where X1 = �1=2 _
01 and X2 = �1=2 _
02; and the second line uses that PX2 = X2 (X
0
2X2)

�1X 0
2 =

Ir(r+1)=2; since dim( _
2) = dim� = r (r + 1) =2 and so X2 is square andMX2 = Ir(r+1)=2�PX2 = 0:
Applying Lemmata 1 and 2 to (A.15), we obtain that

p
n(�̂n � �0) !d N (0; C0) ; where

C0 = A�10 B0A�10 and the explicit formulae for B0, A0 andA�10 are given in (A.1), (A.16) and (A.17).
It remains to derive an expression for the asymptotic sandwich-form variance; by combining the
expressions for B0 and A�10 in (A.17) and (A.1):
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since MX2 = 0: Similarly,
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We conclude that the asymptotic variance C0 is given by
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7.4 Additional Monte Carlo Results
Table 6: Prior distributions and DGP values

�r �g �a �� r� �  1  2 ��1 �r �g �a
DGP �0 1.00 1.00 1.00 4.00 2.00 0.50 1.50 0.50 2.00 0.50 0.70 0.70
Prior pdf IG IG IG G G G G G G B B B
Prior mean 1.00 1.00 1.00 4.00 2.00 0.50 1.50 0.50 2.00 0.50 0.70 0.70
Prior std 2.00 2.00 2.00 2.00 1.00 0.30 0.25 0.25 0.50 0.20 0.10 0.10
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Table 7: Bias DGP I

�r �g �a �� r� �  1  2 ��1 �r �g �a
n=200 G-DSGE -0.01 0.07 0.02 -0.13 -0.12 0.01 0.11 -0.14 0.01 -0.01 0.00 0.00

MHG-DSGE -0.04 0.03 0.01 -0.12 -0.11 0.00 0.19 -0.26 0.07 -0.02 0.00 0.00
n=500 G-DSGE 0.00 0.05 0.01 -0.10 -0.10 0.01 0.06 -0.06 0.02 0.00 0.00 0.00

MHG-DSGE -0.02 0.04 0.00 -0.11 -0.11 0.00 0.09 -0.11 0.05 -0.01 0.00 0.00
n=1000 G-DSGE 0.00 0.03 0.01 -0.05 -0.06 0.00 0.03 -0.04 0.03 0.00 0.00 0.00

MHG-DSGE -0.01 0.02 0.00 -0.05 -0.06 0.00 0.04 -0.05 0.04 0.00 0.00 0.00

RMSE DGP I

n=200 G-DSGE 0.11 0.20 0.13 0.58 0.49 0.05 0.20 0.28 0.22 0.03 0.03 0.04
MHG-DSGE 0.13 0.22 0.15 0.59 0.51 0.05 0.28 0.40 0.27 0.04 0.04 0.04

n=500 G-DSGE 0.07 0.17 0.09 0.43 0.42 0.04 0.13 0.16 0.24 0.02 0.02 0.03
MHG-DSGE 0.08 0.19 0.09 0.44 0.44 0.04 0.18 0.23 0.28 0.02 0.02 0.03

n=1000 G-DSGE 0.05 0.14 0.07 0.33 0.34 0.03 0.08 0.10 0.23 0.01 0.02 0.02
MHG-DSGE 0.05 0.16 0.07 0.33 0.34 0.03 0.10 0.12 0.26 0.01 0.02 0.02

Table 8: Bias DGP II

�r �g �a �� r� �  1  2 ��1 �r �g �a
n=200 G-DSGE 0.00 0.06 0.03 -0.12 -0.12 0.01 0.11 -0.14 0.00 -0.01 0.00 0.00

MHG-DSGE -0.05 -0.02 0.02 -0.11 -0.10 -0.01 0.23 -0.32 0.14 -0.02 0.00 0.00
n=500 G-DSGE 0.00 0.05 0.01 -0.10 -0.11 0.01 0.05 -0.06 0.01 0.00 0.00 0.00

MHG-DSGE -0.03 0.01 0.01 -0.08 -0.09 0.00 0.12 -0.16 0.10 -0.01 0.00 0.00
n=1000 G-DSGE 0.00 0.03 0.00 -0.06 -0.06 0.00 0.03 -0.03 0.01 0.00 0.00 0.00

MHG-DSGE -0.01 0.01 0.00 -0.06 -0.06 0.00 0.05 -0.07 0.07 0.00 0.00 0.00

RMSE DGP II

n=200 G-DSGE 0.19 0.23 0.21 0.59 0.49 0.05 0.21 0.29 0.22 0.03 0.03 0.04
MHG-DSGE 0.22 0.25 0.25 0.60 0.50 0.05 0.31 0.45 0.32 0.04 0.04 0.04

n=500 G-DSGE 0.12 0.19 0.13 0.42 0.41 0.04 0.13 0.15 0.24 0.02 0.02 0.03
MHG-DSGE 0.12 0.25 0.14 0.44 0.43 0.04 0.22 0.29 0.31 0.02 0.02 0.03

n=1000 G-DSGE 0.09 0.16 0.09 0.33 0.34 0.03 0.08 0.09 0.23 0.01 0.02 0.02
MHG-DSGE 0.09 0.17 0.09 0.34 0.35 0.03 0.13 0.16 0.28 0.01 0.02 0.02

Table 9: Bias DGP III

�r �g �a �� r� �  1  2 ��1 �r �g �a
n=200 G-DSGE 0.00 0.08 0.03 -0.13 -0.09 0.01 0.12 -0.14 -0.01 -0.01 0.00 0.00

MHG-DSGE -0.10 -0.11 0.03 -0.12 -0.05 -0.03 0.35 -0.53 0.37 -0.03 0.01 0.02
n=500 G-DSGE 0.00 0.05 0.01 -0.09 -0.08 0.01 0.06 -0.06 0.01 0.00 0.00 0.00

MHG-DSGE -0.06 -0.06 0.01 -0.08 -0.06 -0.02 0.23 -0.31 0.26 -0.01 0.00 0.01
n=1000 G-DSGE 0.00 0.04 0.01 -0.06 -0.06 0.00 0.05 -0.06 0.01 0.00 0.00 0.00

MHG-DSGE -0.05 -0.03 0.01 -0.05 -0.05 -0.01 0.14 -0.11 0.14 -0.01 0.00 0.00

RMSE DGP III

n=200 G-DSGE 0.27 0.29 0.28 0.61 0.51 0.05 0.21 0.29 0.24 0.03 0.03 0.04
MHG-DSGE 0.28 0.36 0.32 0.65 0.55 0.06 0.40 0.60 0.51 0.05 0.04 0.04

n=500 G-DSGE 0.18 0.22 0.19 0.43 0.42 0.04 0.13 0.16 0.25 0.02 0.02 0.03
MHG-DSGE 0.19 0.26 0.20 0.47 0.45 0.04 0.32 0.43 0.43 0.03 0.02 0.03

n=1000 G-DSGE 0.13 0.19 0.14 0.34 0.35 0.03 0.12 0.15 0.23 0.01 0.02 0.02
MHG-DSGE 0.14 0.21 0.14 0.37 0.37 0.04 0.22 0.23 0.35 0.02 0.02 0.02
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Table 10: Bias DGP IV

�r �g �a �� r� �  1  2 ��1 �r �g �a
n=200 G-DSGE -0.01 0.07 0.02 -0.13 -0.11 0.01 0.11 -0.14 -0.01 -0.01 0.00 0.00

MHG-DSGE -0.08 -0.05 0.01 -0.13 -0.09 -0.01 0.27 -0.39 0.21 -0.02 0.00 0.01
n=500 G-DSGE 0.00 0.05 0.01 -0.08 -0.08 0.01 0.05 -0.06 0.01 0.00 0.00 0.00

MHG-DSGE -0.04 -0.03 0.01 -0.07 -0.06 -0.01 0.17 -0.23 0.17 -0.01 0.00 0.00
n=1000 G-DSGE -0.01 0.04 0.01 -0.06 -0.06 0.00 0.05 -0.05 0.01 0.00 0.00 0.00

MHG-DSGE -0.04 -0.01 0.01 -0.06 -0.06 -0.01 0.11 -0.22 0.14 -0.01 0.00 0.00

RMSE DGP IV

n=200 G-DSGE 0.23 0.26 0.24 0.58 0.50 0.05 0.21 0.29 0.22 0.03 0.03 0.04
MHG-DSGE 0.23 0.29 0.26 0.61 0.52 0.06 0.35 0.51 0.37 0.04 0.04 0.04

n=500 G-DSGE 0.15 0.21 0.17 0.43 0.43 0.04 0.13 0.16 0.24 0.02 0.02 0.03
MHG-DSGE 0.16 0.22 0.17 0.46 0.44 0.04 0.27 0.36 0.36 0.03 0.02 0.03

n=1000 G-DSGE 0.11 0.17 0.12 0.33 0.34 0.03 0.12 0.14 0.23 0.01 0.02 0.02
MHG-DSGE 0.12 0.19 0.12 0.35 0.36 0.03 0.24 0.29 0.31 0.02 0.02 0.02

Table 11: Bias DGP V

�r �g �a �� r� �  1  2 ��1 �r �g �a
n=200 G-DSGE -0.02 0.01 -0.01 -0.08 -0.10 0.01 0.03 -0.03 -0.01 -0.01 0.00 0.00
n=500 G-DSGE -0.02 0.00 -0.02 -0.06 -0.07 0.01 0.03 -0.03 0.00 0.00 0.00 0.00
n=1000 G-DSGE -0.01 0.01 -0.01 -0.05 -0.05 0.00 0.02 -0.03 0.01 0.00 0.00 0.00

RMSE DGP V

n=200 G-DSGE 0.37 0.29 0.39 0.49 0.46 0.05 0.10 0.12 0.29 0.03 0.04 0.04
n=500 G-DSGE 0.32 0.25 0.34 0.38 0.39 0.04 0.09 0.10 0.26 0.02 0.02 0.03
n=1000 G-DSGE 0.28 0.24 0.29 0.32 0.33 0.03 0.08 0.09 0.24 0.01 0.02 0.02

7.5 Additional results
7.5.1 Linearised Model
For completeness, we list below the linearised equations and refer the reader to the original

Smets andWouters (2007) paper for full derivation of the model�s equations and steady states. The
derivations and steady state expressions of the �nancial friction block can be found in Del Negro
and Schorfheide (2013). The main di¤erence with the speci�cation of Del Negro and Schorfheide
(2013) is that we do not impose a stochastic (unit root) trend in productivity, as in the original
Smets and Wouters (2007) speci�cation.
The resource constraint in the model is given by

yt = (1� gy � iy)ct + ((
 � 1� �)ky)it + (R
k
�ky)zt + "gt :

The consumption Euler equation is
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The investment Euler equation,
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The aggregate production function is yt = �(�kst + (1� �)lt + "at ):
The relation between e¤ectively rented capital and capital follows kst = kt�1 + zt; with degree

of capital utilization given by zt =
1� 
 
rkt :

The capital accumulation equation follows kt = 1��


kt�1+(1�1��



)it+(1�1��



)((1+�
1��c)
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The price mark-up is �pt = �(kst � lt) + "at � wt; the resulting new Keynesian Phillips curve is
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The rental rate of capital is rkt = �(kt � lt) + wt:
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The wage block is characterised by: (i) a wage mark-up equation: �wt = wt� (�llt+ 1
1��=
 (ct�

�=
ct�1)) and (ii) a wage equation

wt =
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The Taylor Rule is given by
rt = �rt�1 + (1� �) fr��t + ry(yt � ypt )g+ r�y

�
(yt � ypt )� (yt�1 � ypt�1)

�
+ "rt :

The �nancial friction block is characterised by three equations: (i) a corporate spread equation:
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h
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i
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The eight stochastic processes in the model are: (i) government spending: "gt = �g"
g
t�1 + �g�

g
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a
t ; (ii) TFP: "

a
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a
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investment-technology process: "it = �i"
i
t�1+�i�

i
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(vi) a price mark-up process: "pt = �p"
p
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p
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p
t�1; (vii) wage mark-up process: "

w
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shocks given by �jt with volatility parameter �j for j 2 fg; a; b; i; r; p; w; !g :
7.5.2 Measurement Equation and Data
The measurement equation is given and transformed as

Yt =

2666664
Yt
Ct
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�t
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St

3777775 =
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ct � ct�1
it � it�1
wt � wt�1
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100 � Et( ~Rk
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3777775 ; Yt =
266666664

Yt = 100 �� ln(GDPt=POPt)
Ct = 100 �� ln(CONt=POPt)
It = 100 �� ln((INVt=CPIt)=POPt)
Wt = 100 �� ln(WAGEt)
Ht = HOURSt=POPt � �H
�t = 100 �� ln(CPIt)
Rt = 1=4 � FFRt

St = 1=4 � (BAAt � TRt)

377777775
The series used for the estimation are described in Table 10. Table 11 presents the �rst four sample
moments of the observables Yt: The prior distributions as well as posterior mean and 95% credible
sets are described in Table 13. The number of draws for all models is 30; 000, from which we drop
the �rst 10; 000. The scaling parameter for the MH has been adjusted in order to obtain rejection
rates of 20%-30%.

Table 10: Data Description
Variable Description Source

GDPt GDP, Total, Constant Prices, AR, SA, USD, 2012 chnd prices U.S. Bureau of Economic Analysis
CONt PCE, Total, Constant Prices, AR, SA, USD, 2012 chnd prices U.S. Bureau of Economic Analysis
INVt Private Fixed Investment, Total, Current Prices, AR, SA, USD U.S. Bureau of Economic Analysis
CPIt Consumer price index, AR, SA, Index 1984=100 U.S. Bureau of Economic Analysis

WAGEt Real hourly compensation, nonfarm business, index, SA, Index 2012=100 U.S. Bureau of Labor Statistics
HOURSt Hours worked all workers, AR, SA Index Q3 1969=100 U.S. Bureau of Labor Statistics
POPt Popultaion Total, all ages U.S. Bureau of Economic Analysis
FFRt Federal Funds E¤ective Rate Federal Reserve, U.S.
BAAt Moody�s Baa-Rated Corporate Bond Yield Reuters
TRt Constant Maturity Yields, 10 Year Federal Reserve, U.S.
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Table 11: Sample moments of observables

Y t Ct It Wt Ht �t Rt St
Mean 0.48 1.37 0.29 0.29 0.00 0.94 1.22 0.51
Variance 1.25 1.64 22.34 0.85 4.11 0.58 0.87 0.04
Skewness -2.03 -2.41 -0.58 1.26 -1.32 0.70 0.84 0.79
Kurtosis 34.49 42.63 5.34 11.90 24.98 5.68 3.81 5.52

Table 12: Fixed Parameters
Parameter Fixed at value

�w Steady state mark up in labour market 1.50
�w Curvature Kimball aggregator labour market 10.00
� Capital Depreciation rate 0.025
�p Curvature Kimball aggregator goods market 10.00
gy Exogenous spending GDP ratio 0.18
F
�

Steady state default probability 0.03

� Survival rate of entrepreneurs 0.99

Table 13: Prior and posterior distributions for the parameters.
Parameter Prior Distribution Posterior Distribution

G MHG Ind MHG Orth
pdf Mean St.Dev.Mean 95% set Mean 95% set Mean 95% set

' Elasticity Capital Adj Cost Normal 4 1.5 8.68 [7.67,9.69] 9.02 [4.68,12.66] 10.69 [5.82,13.58]
�c Elasticity Int Substitution Normal 1.5 0.3 1.23 [0.93,1.38] 1.41 [1.03,1.85] 1.41 [1.13,1.88]
� Habit Formation Beta 0.7 0.1 0.78 [0.73,0.82] 0.72 [0.61,0.80] 0.72 [0.48,0.81]
�w Calvo Probability Labour Beta 0.5 0.1 0.98 [0.97,0.99] 0.97 [0.95,0.99] 0.98 [0.97,0.99]
�l Elasticity Labour Supply Normal 2 0.75 3.03 [1.86,4.38] 2.69 [1.37,4.28] 2.23 [0.97,3.96]
�p Calvo Probability Goods Beta 0.5 0.1 0.77 [0.87,0.64] 0.72 [0.64,0.92] 0.87 [0.81,0.93]
�w Wage Indexation Beta 0.5 0.15 0.98 [0.97,0.99] 0.93 [0.89,0.98] 0.80 [0.69,0.97]
�p Price Indexation Beta 0.5 0.15 0.90 [0.80,0.96] 0.90 [0.71,0.98] 0.38 [0.19,0.94]

 Elasticity of Capital Beta 0.5 0.2 0.80 [0.70,0.89] 0.83 [0.72,0.92] 0.86 [0.74,0.94]
� Fixed Costs Producers Normal 1.25 0.12 1.46 [1.15,1.63] 1.46 [1.09,1.55] 1.59 [1.10,1.92]
r� In�ation Coe¢ cient Normal 1.5 0.25 1.01 [1.00,1.02] 1.01 [1.00,1.05] 1.02 [1.00,1.09]
� Interest Rate Smoothing Beta 0.75 0.1 0.94 [0.92,0.96] 0.93 [0.90,0.96] 0.87 [0.83,0.93]
ry Output Gap Coe¢ cient Normal 0.12 0.05 0.02 [0.02,0.03] 0.03 [0.01,0.05] 0.01 [-0.01,0.02]

r�y Coe¢ cient �Output Gap Normal 0.12 0.05 0.06 [0.04,0.09] 0.06 [0.03,0.09] 0.04 [0.01,0.06]

100(��1�1) Households�Discount Factor Gamma 0.25 0.1 0.14 [0.05,0.29] 0.26 [0.08,0.43] 0.18 [0.06,0.31]
�� Steady State In�ation Gamma 0.62 0.1 0.61 [0.43,0.81] 0.59 [0.39,0.80] 0.63 [0.43,0.84]
l� Steady State Hours Normal 0 2 0.16 [-3.83,4.13] -0.97 [-4.59,2.87] -0.10 [-3.94,3.38]

� SS Quarterly Growth Normal 0.4 0.1 0.26 [0.24,0.28] 0.27 [0.24,0.29] 0.26 [0.25,0.28]
� Capital Share Normal 0.3 0.05 0.07 [0.05,0.10] 0.09 [0.06,0.13] 0.10 [0.07,0.15]
SP � Steady State Spread Gamma 2 0.3 0.33 [0.26,0.41] 0.36 [0.28,0.45] 0.43 [0.31,0.54]
�sp;b E¤ect of spread on Tobin�s Q Beta 0.05 0.015 0.01 [0.01,0.01] 0.01 [0.01,0.01] 0.01 [0.01,0.02]
�a St. Dev. TFP Shock Uniform 0 5 1.99 [1.80,2.12] 1.90 [0.78,2.72] 1.93 [0.78,2.78]
�b St. Dev. Risk Premium Shock Uniform 0 5 0.001 [0.000,0.002] 0.006 [0.001,0.038] 0.003 [0.001,0.012]
�g St. Dev. Spending Shock Uniform 0 5 0.99 [0.90,1.09] 0.95 [0.77,1.16] 0.96 [0.78,1.18]
�i St. Dev. Investment Shock Uniform 0 5 0.53 [0.41,0.67] 1.09 [0.44,2.76] 1.71 [0.47,2.94]
�r St. Dev. Monetary Policy Shock Uniform 0 5 0.23 [0.21,0.26] 0.24 [0.17,0.31] 0.24 [0.17,0.37]
�p St. Dev. Price Mark-Up Shock Uniform 0 5 0.26 [0.24,0.29] 0.44 [0.23,1.70] 0.50 [0.32,1.48]
�w St. Dev. Wage Mark-Up Shock Uniform 0 5 0.51 [0.47,0.57] 0.55 [0.43,0.85] 0.67 [0.44,1.56]
�! St. Dev. Financial Friction ShockUniform 0 5 0.10 [0.09,0.11] 0.13 [0.08,0.24] 0.12 [0.08,0.16]
�a Persistence of TFP Beta 0.5 0.2 0.99 [0.98,1.00] 0.98 [0.96,1.00] 0.98 [0.97,1.00]
�b Persistence of Risk Premium Beta 0.5 0.2 0.99 [0.99,1.00] 0.99 [0.99,1.00] 0.99 [0.99,1.00]
�g Persistence of Spending Beta 0.5 0.2 0.99 [0.99,1.00] 0.99 [0.99,1.00] 0.99 [0.99,1.00]
�i Persistence of Investment Beta 0.3 0.2 0.85 [0.78,0.91] 0.68 [0.24,0.91] 0.39 [0.08,0.89]
�r Persistence of Monetary Policy Beta 0.3 0.2 0.15 [0.06,0.24] 0.14 [0.02,0.27] 0.19 [0.07,0.34]
�p Persistence of Price Mark Up Beta 0.3 0.2 0.99 [0.99,1.00] 0.99 [0.98,1.00] 0.91 [0.85,1.00]
�w Persistence of Wage Mark Up Beta 0.5 0.2 0.85 [0.84,0.87] 0.83 [0.81,0.85] 0.84 [0.82,0.85]
�! Persistence of Financial Friction Beta 0.5 0.2 0.98 [0.96,0.99] 0.98 [0.95,1.00] 0.98 [0.95,1.00]
�p MA Coe¢ cient Price Mark Up Beta 0.5 0.2 0.97 [0.96,0.99] 0.95 [0.92,0.99] 0.94 [0.90,0.99]
�w MA Coe¢ cient Wage Mark Up Beta 0.5 0.2 0.89 [0.89,0.90] 0.90 [0.89,0.91] 0.89 [0.88,0.90]
�ga TFP Coe¢ cient Spending Normal 0.5 0.2 0.06 [0.02,0.11] 0.11 [0.06,0.21] 0.8 [0.04,0.14]
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